Created
February 10, 2022 08:04
-
-
Save marmakoide/6396cc91b8de7cf59f1175d26dd74135 to your computer and use it in GitHub Desktop.
Quaternion from ZYX intrisic Euler angles (Z rot, then local -Y rot, then local X rot)
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
import numpy | |
def zyx_to_quaternion(z_angle, y_angle, x_angle): | |
cos_x, sin_x = numpy.cos(x_angle / 2), numpy.sin(x_angle / 2) | |
cos_y, sin_y = numpy.cos(y_angle / 2), numpy.sin(y_angle / 2) | |
cos_z, sin_z = numpy.cos(z_angle / 2), numpy.sin(z_angle / 2) | |
return numpy.array([ | |
cos_x * cos_y * cos_z - sin_x * sin_y * sin_z, | |
sin_x * cos_y * cos_z + cos_x * sin_y * sin_z, | |
sin_x * cos_y * sin_z - cos_x * sin_y * cos_z, | |
sin_x * sin_y * cos_z + cos_x * cos_y * sin_z, | |
]) | |
def quaternion_to_zyx(Q): | |
a, b, c, d = Q | |
y_angle = numpy.arcsin(numpy.clip(2 * (b * d - c * a), -1., 1.)) | |
x_angle = numpy.arctan2(2 * (c * d + a * b), 1. - 2 * (b ** 2 + c ** 2)) | |
z_angle = numpy.arctan2(2 * (b * c + d * a), 1. - 2 * (c ** 2 + d ** 2)) | |
return z_angle, y_angle, x_angle |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment