Last active
November 17, 2018 07:16
-
-
Save martin0258/58dc5fd0eb08e9235fce84d8c8def40d to your computer and use it in GitHub Desktop.
Updated pipeline config, BUILD, and DetectorActivity.java for custom object detection model (detecting dogs n cats)
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
# Description: | |
# TensorFlow camera demo app for Android. | |
load("@build_bazel_rules_android//android:rules.bzl", "android_binary") | |
package(default_visibility = ["//visibility:public"]) | |
licenses(["notice"]) # Apache 2.0 | |
exports_files(["LICENSE"]) | |
# Build the demo native demo lib from the original directory to reduce code | |
# reuse. Note that the Java counterparts (ObjectTracker.java and | |
# ImageUtils.java) are still duplicated. | |
cc_library( | |
name = "tensorflow_native_libs", | |
srcs = [ | |
"//tensorflow/examples/android:libtensorflow_demo.so", | |
], | |
tags = [ | |
"manual", | |
"notap", | |
], | |
) | |
android_binary( | |
name = "tflite_demo", | |
srcs = glob([ | |
"app/src/main/java/**/*.java", | |
]), | |
# Package assets from assets dir as well as all model targets. | |
# Remove undesired models (and corresponding Activities in source) | |
# to reduce APK size. | |
assets = [ | |
"//tensorflow/contrib/lite/examples/android/app/src/main/assets:labels_mobilenet_quant_v1_224.txt", | |
"@tflite_mobilenet//:mobilenet_quant_v1_224.tflite", | |
"@tflite_conv_actions_frozen//:conv_actions_frozen.tflite", | |
"//tensorflow/contrib/lite/examples/android/app/src/main/assets:conv_actions_labels.txt", | |
"@tflite_mobilenet_ssd//:mobilenet_ssd.tflite", | |
"//tensorflow/contrib/lite/examples/android/app/src/main/assets:detect.tflite", | |
"//tensorflow/contrib/lite/examples/android/app/src/main/assets:box_priors.txt", | |
"//tensorflow/contrib/lite/examples/android/app/src/main/assets:pets_labels_list.txt", | |
], | |
assets_dir = "", | |
custom_package = "org.tensorflow.lite.demo", | |
inline_constants = 1, | |
manifest = "app/src/main/AndroidManifest.xml", | |
nocompress_extensions = [ | |
".tflite", | |
], | |
resource_files = glob(["app/src/main/res/**"]), | |
tags = [ | |
"manual", | |
"notap", | |
], | |
deps = [ | |
":tensorflow_native_libs", | |
"//tensorflow/contrib/lite/java:tensorflowlite", | |
], | |
) |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
/* | |
* Copyright 2018 The TensorFlow Authors. All Rights Reserved. | |
* | |
* Licensed under the Apache License, Version 2.0 (the "License"); | |
* you may not use this file except in compliance with the License. | |
* You may obtain a copy of the License at | |
* | |
* http://www.apache.org/licenses/LICENSE-2.0 | |
* | |
* Unless required by applicable law or agreed to in writing, software | |
* distributed under the License is distributed on an "AS IS" BASIS, | |
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |
* See the License for the specific language governing permissions and | |
* limitations under the License. | |
*/ | |
package org.tensorflow.demo; | |
import android.graphics.Bitmap; | |
import android.graphics.Bitmap.Config; | |
import android.graphics.Canvas; | |
import android.graphics.Color; | |
import android.graphics.Matrix; | |
import android.graphics.Paint; | |
import android.graphics.Paint.Style; | |
import android.graphics.RectF; | |
import android.graphics.Typeface; | |
import android.media.ImageReader.OnImageAvailableListener; | |
import android.os.SystemClock; | |
import android.util.Size; | |
import android.util.TypedValue; | |
import android.widget.Toast; | |
import java.io.IOException; | |
import java.util.LinkedList; | |
import java.util.List; | |
import java.util.Vector; | |
import org.tensorflow.demo.OverlayView.DrawCallback; | |
import org.tensorflow.demo.env.BorderedText; | |
import org.tensorflow.demo.env.ImageUtils; | |
import org.tensorflow.demo.env.Logger; | |
import org.tensorflow.demo.tracking.MultiBoxTracker; | |
import org.tensorflow.lite.demo.R; // Explicit import needed for internal Google builds. | |
/** | |
* An activity that uses a TensorFlowMultiBoxDetector and ObjectTracker to detect and then track | |
* objects. | |
*/ | |
public class DetectorActivity extends CameraActivity implements OnImageAvailableListener { | |
private static final Logger LOGGER = new Logger(); | |
// Configuration values for the prepackaged SSD model. | |
private static final int TF_OD_API_INPUT_SIZE = 300; | |
private static final boolean TF_OD_API_IS_QUANTIZED = true; | |
private static final String TF_OD_API_MODEL_FILE = "detect.tflite"; | |
private static final String TF_OD_API_LABELS_FILE = "file:///android_asset/pets_labels_list.txt"; | |
// Which detection model to use: by default uses Tensorflow Object Detection API frozen | |
// checkpoints. | |
private enum DetectorMode { | |
TF_OD_API; | |
} | |
private static final DetectorMode MODE = DetectorMode.TF_OD_API; | |
// Minimum detection confidence to track a detection. | |
private static final float MINIMUM_CONFIDENCE_TF_OD_API = 0.6f; | |
private static final boolean MAINTAIN_ASPECT = false; | |
private static final Size DESIRED_PREVIEW_SIZE = new Size(640, 480); | |
private static final boolean SAVE_PREVIEW_BITMAP = false; | |
private static final float TEXT_SIZE_DIP = 10; | |
private Integer sensorOrientation; | |
private Classifier detector; | |
private long lastProcessingTimeMs; | |
private Bitmap rgbFrameBitmap = null; | |
private Bitmap croppedBitmap = null; | |
private Bitmap cropCopyBitmap = null; | |
private boolean computingDetection = false; | |
private long timestamp = 0; | |
private Matrix frameToCropTransform; | |
private Matrix cropToFrameTransform; | |
private MultiBoxTracker tracker; | |
private byte[] luminanceCopy; | |
private BorderedText borderedText; | |
@Override | |
public void onPreviewSizeChosen(final Size size, final int rotation) { | |
final float textSizePx = | |
TypedValue.applyDimension( | |
TypedValue.COMPLEX_UNIT_DIP, TEXT_SIZE_DIP, getResources().getDisplayMetrics()); | |
borderedText = new BorderedText(textSizePx); | |
borderedText.setTypeface(Typeface.MONOSPACE); | |
tracker = new MultiBoxTracker(this); | |
int cropSize = TF_OD_API_INPUT_SIZE; | |
try { | |
detector = | |
TFLiteObjectDetectionAPIModel.create( | |
getAssets(), | |
TF_OD_API_MODEL_FILE, | |
TF_OD_API_LABELS_FILE, | |
TF_OD_API_INPUT_SIZE, | |
TF_OD_API_IS_QUANTIZED); | |
cropSize = TF_OD_API_INPUT_SIZE; | |
} catch (final IOException e) { | |
LOGGER.e("Exception initializing classifier!", e); | |
Toast toast = | |
Toast.makeText( | |
getApplicationContext(), "Classifier could not be initialized", Toast.LENGTH_SHORT); | |
toast.show(); | |
finish(); | |
} | |
previewWidth = size.getWidth(); | |
previewHeight = size.getHeight(); | |
sensorOrientation = rotation - getScreenOrientation(); | |
LOGGER.i("Camera orientation relative to screen canvas: %d", sensorOrientation); | |
LOGGER.i("Initializing at size %dx%d", previewWidth, previewHeight); | |
rgbFrameBitmap = Bitmap.createBitmap(previewWidth, previewHeight, Config.ARGB_8888); | |
croppedBitmap = Bitmap.createBitmap(cropSize, cropSize, Config.ARGB_8888); | |
frameToCropTransform = | |
ImageUtils.getTransformationMatrix( | |
previewWidth, previewHeight, | |
cropSize, cropSize, | |
sensorOrientation, MAINTAIN_ASPECT); | |
cropToFrameTransform = new Matrix(); | |
frameToCropTransform.invert(cropToFrameTransform); | |
trackingOverlay = (OverlayView) findViewById(R.id.tracking_overlay); | |
trackingOverlay.addCallback( | |
new DrawCallback() { | |
@Override | |
public void drawCallback(final Canvas canvas) { | |
tracker.draw(canvas); | |
if (isDebug()) { | |
tracker.drawDebug(canvas); | |
} | |
} | |
}); | |
addCallback( | |
new DrawCallback() { | |
@Override | |
public void drawCallback(final Canvas canvas) { | |
if (!isDebug()) { | |
return; | |
} | |
final Bitmap copy = cropCopyBitmap; | |
if (copy == null) { | |
return; | |
} | |
final int backgroundColor = Color.argb(100, 0, 0, 0); | |
canvas.drawColor(backgroundColor); | |
final Matrix matrix = new Matrix(); | |
final float scaleFactor = 2; | |
matrix.postScale(scaleFactor, scaleFactor); | |
matrix.postTranslate( | |
canvas.getWidth() - copy.getWidth() * scaleFactor, | |
canvas.getHeight() - copy.getHeight() * scaleFactor); | |
canvas.drawBitmap(copy, matrix, new Paint()); | |
final Vector<String> lines = new Vector<String>(); | |
if (detector != null) { | |
final String statString = detector.getStatString(); | |
final String[] statLines = statString.split("\n"); | |
for (final String line : statLines) { | |
lines.add(line); | |
} | |
} | |
lines.add(""); | |
lines.add("Frame: " + previewWidth + "x" + previewHeight); | |
lines.add("Crop: " + copy.getWidth() + "x" + copy.getHeight()); | |
lines.add("View: " + canvas.getWidth() + "x" + canvas.getHeight()); | |
lines.add("Rotation: " + sensorOrientation); | |
lines.add("Inference time: " + lastProcessingTimeMs + "ms"); | |
borderedText.drawLines(canvas, 10, canvas.getHeight() - 10, lines); | |
} | |
}); | |
} | |
OverlayView trackingOverlay; | |
@Override | |
protected void processImage() { | |
++timestamp; | |
final long currTimestamp = timestamp; | |
byte[] originalLuminance = getLuminance(); | |
tracker.onFrame( | |
previewWidth, | |
previewHeight, | |
getLuminanceStride(), | |
sensorOrientation, | |
originalLuminance, | |
timestamp); | |
trackingOverlay.postInvalidate(); | |
// No mutex needed as this method is not reentrant. | |
if (computingDetection) { | |
readyForNextImage(); | |
return; | |
} | |
computingDetection = true; | |
LOGGER.i("Preparing image " + currTimestamp + " for detection in bg thread."); | |
rgbFrameBitmap.setPixels(getRgbBytes(), 0, previewWidth, 0, 0, previewWidth, previewHeight); | |
if (luminanceCopy == null) { | |
luminanceCopy = new byte[originalLuminance.length]; | |
} | |
System.arraycopy(originalLuminance, 0, luminanceCopy, 0, originalLuminance.length); | |
readyForNextImage(); | |
final Canvas canvas = new Canvas(croppedBitmap); | |
canvas.drawBitmap(rgbFrameBitmap, frameToCropTransform, null); | |
// For examining the actual TF input. | |
if (SAVE_PREVIEW_BITMAP) { | |
ImageUtils.saveBitmap(croppedBitmap); | |
} | |
runInBackground( | |
new Runnable() { | |
@Override | |
public void run() { | |
LOGGER.i("Running detection on image " + currTimestamp); | |
final long startTime = SystemClock.uptimeMillis(); | |
final List<Classifier.Recognition> results = detector.recognizeImage(croppedBitmap); | |
lastProcessingTimeMs = SystemClock.uptimeMillis() - startTime; | |
cropCopyBitmap = Bitmap.createBitmap(croppedBitmap); | |
final Canvas canvas = new Canvas(cropCopyBitmap); | |
final Paint paint = new Paint(); | |
paint.setColor(Color.RED); | |
paint.setStyle(Style.STROKE); | |
paint.setStrokeWidth(2.0f); | |
float minimumConfidence = MINIMUM_CONFIDENCE_TF_OD_API; | |
switch (MODE) { | |
case TF_OD_API: | |
minimumConfidence = MINIMUM_CONFIDENCE_TF_OD_API; | |
break; | |
} | |
final List<Classifier.Recognition> mappedRecognitions = | |
new LinkedList<Classifier.Recognition>(); | |
for (final Classifier.Recognition result : results) { | |
final RectF location = result.getLocation(); | |
if (location != null && result.getConfidence() >= minimumConfidence) { | |
canvas.drawRect(location, paint); | |
cropToFrameTransform.mapRect(location); | |
result.setLocation(location); | |
mappedRecognitions.add(result); | |
} | |
} | |
tracker.trackResults(mappedRecognitions, luminanceCopy, currTimestamp); | |
trackingOverlay.postInvalidate(); | |
requestRender(); | |
computingDetection = false; | |
} | |
}); | |
} | |
@Override | |
protected int getLayoutId() { | |
return R.layout.camera_connection_fragment_tracking; | |
} | |
@Override | |
protected Size getDesiredPreviewFrameSize() { | |
return DESIRED_PREVIEW_SIZE; | |
} | |
@Override | |
public void onSetDebug(final boolean debug) { | |
detector.enableStatLogging(debug); | |
} | |
} |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
/* Copyright 2016 The TensorFlow Authors. All Rights Reserved. | |
Licensed under the Apache License, Version 2.0 (the "License"); | |
you may not use this file except in compliance with the License. | |
You may obtain a copy of the License at | |
http://www.apache.org/licenses/LICENSE-2.0 | |
Unless required by applicable law or agreed to in writing, software | |
distributed under the License is distributed on an "AS IS" BASIS, | |
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |
See the License for the specific language governing permissions and | |
limitations under the License. | |
==============================================================================*/ | |
package org.tensorflow.demo; | |
import android.content.res.AssetFileDescriptor; | |
import android.content.res.AssetManager; | |
import android.graphics.Bitmap; | |
import android.graphics.RectF; | |
import android.os.Trace; | |
import java.io.BufferedReader; | |
import java.io.FileInputStream; | |
import java.io.IOException; | |
import java.io.InputStream; | |
import java.io.InputStreamReader; | |
import java.nio.ByteBuffer; | |
import java.nio.ByteOrder; | |
import java.nio.MappedByteBuffer; | |
import java.nio.channels.FileChannel; | |
import java.util.ArrayList; | |
import java.util.HashMap; | |
import java.util.List; | |
import java.util.Map; | |
import java.util.Vector; | |
import org.tensorflow.demo.env.Logger; | |
import org.tensorflow.lite.Interpreter; | |
/** | |
* Wrapper for frozen detection models trained using the Tensorflow Object Detection API: | |
* github.com/tensorflow/models/tree/master/research/object_detection | |
*/ | |
public class TFLiteObjectDetectionAPIModel implements Classifier { | |
private static final Logger LOGGER = new Logger(); | |
// Only return this many results. | |
private static final int NUM_DETECTIONS = 10; | |
private boolean isModelQuantized; | |
// Float model | |
private static final float IMAGE_MEAN = 128.0f; | |
private static final float IMAGE_STD = 128.0f; | |
// Number of threads in the java app | |
private static final int NUM_THREADS = 4; | |
// Config values. | |
private int inputSize; | |
// Pre-allocated buffers. | |
private Vector<String> labels = new Vector<String>(); | |
private int[] intValues; | |
// outputLocations: array of shape [Batchsize, NUM_DETECTIONS,4] | |
// contains the location of detected boxes | |
private float[][][] outputLocations; | |
// outputClasses: array of shape [Batchsize, NUM_DETECTIONS] | |
// contains the classes of detected boxes | |
private float[][] outputClasses; | |
// outputScores: array of shape [Batchsize, NUM_DETECTIONS] | |
// contains the scores of detected boxes | |
private float[][] outputScores; | |
// numDetections: array of shape [Batchsize] | |
// contains the number of detected boxes | |
private float[] numDetections; | |
private ByteBuffer imgData; | |
private Interpreter tfLite; | |
/** Memory-map the model file in Assets. */ | |
private static MappedByteBuffer loadModelFile(AssetManager assets, String modelFilename) | |
throws IOException { | |
AssetFileDescriptor fileDescriptor = assets.openFd(modelFilename); | |
FileInputStream inputStream = new FileInputStream(fileDescriptor.getFileDescriptor()); | |
FileChannel fileChannel = inputStream.getChannel(); | |
long startOffset = fileDescriptor.getStartOffset(); | |
long declaredLength = fileDescriptor.getDeclaredLength(); | |
return fileChannel.map(FileChannel.MapMode.READ_ONLY, startOffset, declaredLength); | |
} | |
/** | |
* Initializes a native TensorFlow session for classifying images. | |
* | |
* @param assetManager The asset manager to be used to load assets. | |
* @param modelFilename The filepath of the model GraphDef protocol buffer. | |
* @param labelFilename The filepath of label file for classes. | |
* @param inputSize The size of image input | |
* @param isQuantized Boolean representing model is quantized or not | |
*/ | |
public static Classifier create( | |
final AssetManager assetManager, | |
final String modelFilename, | |
final String labelFilename, | |
final int inputSize, | |
final boolean isQuantized) | |
throws IOException { | |
final TFLiteObjectDetectionAPIModel d = new TFLiteObjectDetectionAPIModel(); | |
InputStream labelsInput = null; | |
String actualFilename = labelFilename.split("file:///android_asset/")[1]; | |
labelsInput = assetManager.open(actualFilename); | |
BufferedReader br = null; | |
br = new BufferedReader(new InputStreamReader(labelsInput)); | |
String line; | |
while ((line = br.readLine()) != null) { | |
LOGGER.w(line); | |
d.labels.add(line); | |
} | |
br.close(); | |
d.inputSize = inputSize; | |
try { | |
d.tfLite = new Interpreter(loadModelFile(assetManager, modelFilename)); | |
} catch (Exception e) { | |
throw new RuntimeException(e); | |
} | |
d.isModelQuantized = isQuantized; | |
// Pre-allocate buffers. | |
int numBytesPerChannel; | |
if (isQuantized) { | |
numBytesPerChannel = 1; // Quantized | |
} else { | |
numBytesPerChannel = 4; // Floating point | |
} | |
d.imgData = ByteBuffer.allocateDirect(1 * d.inputSize * d.inputSize * 3 * numBytesPerChannel); | |
d.imgData.order(ByteOrder.nativeOrder()); | |
d.intValues = new int[d.inputSize * d.inputSize]; | |
d.tfLite.setNumThreads(NUM_THREADS); | |
d.outputLocations = new float[1][NUM_DETECTIONS][4]; | |
d.outputClasses = new float[1][NUM_DETECTIONS]; | |
d.outputScores = new float[1][NUM_DETECTIONS]; | |
d.numDetections = new float[1]; | |
return d; | |
} | |
private TFLiteObjectDetectionAPIModel() {} | |
// ref: https://github.com/tensorflow/tensorflow/issues/22106#issuecomment-428409506 | |
private boolean inRange(float number, float max, float min) { | |
return number < max && number >= min; | |
} | |
@Override | |
public List<Recognition> recognizeImage(final Bitmap bitmap) { | |
// Log this method so that it can be analyzed with systrace. | |
Trace.beginSection("recognizeImage"); | |
Trace.beginSection("preprocessBitmap"); | |
// Preprocess the image data from 0-255 int to normalized float based | |
// on the provided parameters. | |
bitmap.getPixels(intValues, 0, bitmap.getWidth(), 0, 0, bitmap.getWidth(), bitmap.getHeight()); | |
imgData.rewind(); | |
for (int i = 0; i < inputSize; ++i) { | |
for (int j = 0; j < inputSize; ++j) { | |
int pixelValue = intValues[i * inputSize + j]; | |
if (isModelQuantized) { | |
// Quantized model | |
imgData.put((byte) ((pixelValue >> 16) & 0xFF)); | |
imgData.put((byte) ((pixelValue >> 8) & 0xFF)); | |
imgData.put((byte) (pixelValue & 0xFF)); | |
} else { // Float model | |
imgData.putFloat((((pixelValue >> 16) & 0xFF) - IMAGE_MEAN) / IMAGE_STD); | |
imgData.putFloat((((pixelValue >> 8) & 0xFF) - IMAGE_MEAN) / IMAGE_STD); | |
imgData.putFloat(((pixelValue & 0xFF) - IMAGE_MEAN) / IMAGE_STD); | |
} | |
} | |
} | |
Trace.endSection(); // preprocessBitmap | |
// Copy the input data into TensorFlow. | |
Trace.beginSection("feed"); | |
outputLocations = new float[1][NUM_DETECTIONS][4]; | |
outputClasses = new float[1][NUM_DETECTIONS]; | |
outputScores = new float[1][NUM_DETECTIONS]; | |
numDetections = new float[1]; | |
Object[] inputArray = {imgData}; | |
Map<Integer, Object> outputMap = new HashMap<>(); | |
outputMap.put(0, outputLocations); | |
outputMap.put(1, outputClasses); | |
outputMap.put(2, outputScores); | |
outputMap.put(3, numDetections); | |
Trace.endSection(); | |
// Run the inference call. | |
Trace.beginSection("run"); | |
tfLite.runForMultipleInputsOutputs(inputArray, outputMap); | |
Trace.endSection(); | |
// Show the best detections. | |
// after scaling them back to the input size. | |
final ArrayList<Recognition> recognitions = new ArrayList<>(NUM_DETECTIONS); | |
for (int i = 0; i < NUM_DETECTIONS; ++i) { | |
final RectF detection = | |
new RectF( | |
outputLocations[0][i][1] * inputSize, | |
outputLocations[0][i][0] * inputSize, | |
outputLocations[0][i][3] * inputSize, | |
outputLocations[0][i][2] * inputSize); | |
// SSD Mobilenet V1 Model assumes class 0 is background class | |
// in label file and class labels start from 1 to number_of_classes+1, | |
// while outputClasses correspond to class index from 0 to number_of_classes | |
int labelOffset = 1; | |
final int classLabel = (int) outputClasses[0][i] + labelOffset; | |
if (inRange(classLabel, labels.size(), 0) && inRange(outputScores[0][i], 1, 0)) { | |
recognitions.add( | |
new Recognition( | |
"" + i, | |
// labels.get((int) outputClasses[0][i] + labelOffset), | |
labels.get(classLabel), | |
outputScores[0][i], | |
detection)); | |
} | |
} | |
Trace.endSection(); // "recognizeImage" | |
return recognitions; | |
} | |
@Override | |
public void enableStatLogging(final boolean logStats) { | |
} | |
@Override | |
public String getStatString() { | |
return ""; | |
} | |
@Override | |
public void close() { | |
} | |
} |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment