Last active
July 10, 2024 18:52
-
-
Save martinmodrak/14dbaacaffdb99fe2d11cd8a023f573a to your computer and use it in GitHub Desktop.
Expectation of scaled dirichlet w.r.t. the aitchinson base
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
| p <- MCMCpack::rdirichlet(1, rep(1, 4))[1,] | |
| N <- 10000 | |
| g2 <- matrix(rnorm(length(p) * N), nrow = length(p))^2 | |
| pg2 = sweep(g2, MARGIN = 1, STATS = p, FUN = "*") | |
| pg2_norm <- sweep(pg2, MARGIN = 2, STATS = colSums(pg2), FUN = "/") | |
| # ILR Transform to coordinates w.r.t an orthonormal basis of the simplex | |
| pg2_ilr_t <- compositions::ilr(t(pg2_norm)) | |
| # Expectation in the transfromed space | |
| E_a_ilr <- colMeans(pg2_ilr_t) | |
| # Backtransform the expectation | |
| E_a <- compositions::ilrInv(E_a_ilr) | |
| as.numeric(E_a) - p | |
| E <- rowMeans(pg2_norm) | |
| if(length(p)==2) { | |
| z <- c(p[2]/p[1], p[1]/p[2]) | |
| E_est <- 1/(1 + sqrt(z)) | |
| print(E_est - E) | |
| } | |
| integrand <- Vectorize(function(u) { | |
| n <- length(p) | |
| u^(n / 2 - 1) / prod(sqrt(1 + u * (1/p[2:n] - 1))) / (1 + u*(1/p[1] - 1))^1.5 | |
| }) | |
| int_res <- integrate(integrand, lower = 0, upper = 1) | |
| fixed <- 0.5 /prod(sqrt(p)) | |
| int_res$value * fixed - E[1] |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment