Created
April 25, 2023 08:26
-
-
Save martinmodrak/61a68f22ed954ae68abc76faeef860b6 to your computer and use it in GitHub Desktop.
Variance reparametrization
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
| ```{r} | |
| library(cmdstanr) | |
| ``` | |
| ```{r} | |
| intercept_uncentered <- cmdstan_model(write_stan_file("data { | |
| int<lower=1> N; | |
| vector[N] signal; | |
| int<lower = 1> N_subj; | |
| vector[N] c_cloze; | |
| array[N] int<lower = 1, upper = N_subj> subj; | |
| } | |
| parameters { | |
| real<lower = 0> sigma; | |
| real<lower = 0> tau; | |
| real alpha; | |
| real beta; | |
| vector[N_subj] z_u; | |
| } | |
| transformed parameters { | |
| vector[N_subj] u; | |
| u = z_u * tau; | |
| } | |
| model { | |
| target += normal_lpdf(alpha| 0,10); | |
| target += normal_lpdf(beta | 0,10); | |
| target += normal_lpdf(sigma | 0, 50) - | |
| normal_lccdf(0 | 0, 50); | |
| target += normal_lpdf(tau | 0, 20) - | |
| normal_lccdf(0 | 0, 20); | |
| target += std_normal_lpdf(z_u); | |
| target += normal_lpdf(signal | alpha + u[subj] + | |
| c_cloze .* beta, sigma); | |
| }")) | |
| ``` | |
| ```{r} | |
| set.seed(455665) | |
| dd <- list(N = 20, signal = rnorm(20), | |
| N_subj = 18, | |
| c_cloze = runif(20) - 0.5, | |
| subj = c(1,1,2,2,3:18)) | |
| res_orig <- intercept_uncentered$sample(dd) | |
| res_orig | |
| ``` | |
| ```{r} | |
| bayesplot::mcmc_pairs(res_orig$draws(), pars = c("sigma", "tau", "alpha", "beta")) | |
| bayesplot::mcmc_pairs(res_orig$draws(), pars = c("sigma", "tau"), transformations = "log") | |
| ``` | |
| ```{r} | |
| intercept_uncentered_split <- cmdstan_model(write_stan_file("data { | |
| int<lower=1> N; | |
| vector[N] signal; | |
| int<lower = 1> N_subj; | |
| vector[N] c_cloze; | |
| array[N] int<lower = 1, upper = N_subj> subj; | |
| } | |
| parameters { | |
| real<lower=0> sigma_total; | |
| real<lower=0,upper=1> sigma_split; | |
| real alpha; | |
| real beta; | |
| vector[N_subj] z_u; | |
| } | |
| transformed parameters { | |
| real<lower = 0> sigma; | |
| real<lower = 0> tau; | |
| vector[N_subj] u; | |
| sigma = sqrt(sigma_total^2 * sigma_split); | |
| tau = sqrt(sigma_total^2 * (1 - sigma_split)); | |
| u = z_u * tau; | |
| } | |
| model { | |
| target += normal_lpdf(alpha| 0,10); | |
| target += normal_lpdf(beta | 0,10); | |
| target += normal_lpdf(sigma_total | 0, sqrt(50 ^ 2 + 20^2)) - | |
| normal_lccdf(0 | 0, sqrt(50 ^ 2 + 20^2)); | |
| target += std_normal_lpdf(z_u); | |
| target += normal_lpdf(signal | alpha + u[subj] + | |
| c_cloze .* beta, sigma); | |
| }")) | |
| ``` | |
| ```{r} | |
| res_split <- intercept_uncentered_split$sample(dd) | |
| res_split | |
| ``` | |
| ```{r} | |
| bayesplot::mcmc_pairs(res_split$draws(), c("sigma_total", "sigma_split", "alpha", "beta")) | |
| bayesplot::mcmc_pairs(res_split$draws(), c("sigma_total", "sigma_split", "alpha", "beta"), | |
| transformations = list("sigma_total" = "log", "sigma_split" = "qlogis", "alpha" = "identity", "beta" = "identity")) | |
| ``` | |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment