Created
October 11, 2012 21:46
-
-
Save masayang/3875713 to your computer and use it in GitHub Desktop.
LinearSVM
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
3.944800674823166098e+00 | 4.996271186415386367e+00 | |
---|---|---|
5.547242838038199508e+00 | 5.414293869669647208e+00 | |
4.620646723315672943e+00 | 4.911930531086467155e+00 | |
4.846418245516238343e+00 | 3.584170537988319083e+00 | |
4.990222033288614689e+00 | 5.167624961159549279e+00 | |
5.832925679378353045e+00 | 6.730998187374821917e+00 | |
4.269651750644930743e+00 | 5.684499994023479275e+00 | |
6.382861274845375021e+00 | 5.195463145627869039e+00 | |
5.236782210357330491e+00 | 3.926700967069445269e+00 | |
4.672536804208451855e+00 | 4.868250521526301888e+00 | |
3.374274529617114826e+00 | 4.504582751173324517e+00 | |
5.931206556272558217e+00 | 4.778139308288982257e+00 | |
2.900587822878246680e+00 | 3.126986668630919564e+00 | |
6.791532199055685837e+00 | 5.319033726993203537e+00 | |
3.630762060845910799e+00 | 3.776761348611581859e+00 | |
5.992647064222478726e+00 | 5.713527138714727727e+00 | |
5.505161529283775224e+00 | 4.819541804597648138e+00 | |
3.616077790576593287e+00 | 4.918686047542636608e+00 | |
3.394639488670115668e+00 | 4.565032395373904706e+00 | |
5.022854487723776629e+00 | 3.723866693262110061e+00 | |
2.604351126875821265e+00 | 3.738815575622392195e+00 | |
3.800671268948935477e+00 | 5.068841625271096163e+00 | |
2.891213774632085620e+00 | 4.000682386564029969e+00 | |
4.595221911022399297e+00 | 4.314471461722843237e+00 | |
5.231989682177436762e+00 | 4.522793026868633603e+00 | |
6.281253055615927394e+00 | 5.142638131342070373e+00 | |
4.873877422791250247e+00 | 5.684262777400867606e+00 | |
5.739554871049046270e-01 | 2.402233601031019905e+00 | |
6.444913396037648567e+00 | 6.812069775909708191e+00 | |
5.628638233234689814e+00 | 4.908559556876610941e+00 | |
5.114270340593272124e+00 | 4.169256421525449063e+00 | |
4.722520671240033607e+00 | 4.764299767611923642e+00 | |
4.740664774229444767e+00 | 5.116837145549135712e+00 | |
4.901796312034974790e+00 | 4.951177095951170948e+00 | |
4.473702791053289829e+00 | 4.976536657760108007e+00 | |
6.884346135048832416e+00 | 5.125640493918783847e+00 | |
5.550361480794389735e+00 | 4.299198836409929392e+00 | |
4.574505916264877570e+00 | 5.419069722455060578e+00 | |
4.504953681253781816e+00 | 3.932504171853936192e+00 | |
6.077378128690015480e+00 | 5.904381155083470389e+00 | |
5.655226585989399091e+00 | 5.174888761900563239e+00 | |
4.499217603531301179e+00 | 3.973193687883942449e+00 | |
5.812214755677928224e+00 | 4.920682380385855481e+00 | |
6.714226166516918504e+00 | 5.436746281416488635e+00 | |
4.050715853099118746e+00 | 4.450959849010588165e+00 | |
6.285150258856717187e+00 | 5.626361394417457973e+00 | |
7.493892523342799983e+00 | 6.008527402674545215e+00 | |
2.070686477723717722e+00 | 3.124018684855495387e+00 | |
4.014236343842761734e+00 | 4.343184465988025877e+00 | |
4.305280542326324955e+00 | 5.052524971707287982e+00 | |
6.530426113203855465e+00 | 5.923378848663530150e+00 | |
3.085352288620366146e+00 | 3.238717657219814416e+00 | |
5.879612530086963496e+00 | 5.320079642020612454e+00 | |
4.459163976705653454e+00 | 5.047120106912217352e+00 | |
3.093260698225638983e+00 | 4.184477013096734588e+00 | |
4.676280599197943921e+00 | 5.714768877015274029e+00 | |
4.516850053203858018e+00 | 3.614722134390073283e+00 | |
9.476701097124244910e-01 | 3.781445553926358727e+00 | |
5.108736579522498822e+00 | 5.341770662641144973e+00 | |
3.233127989542061265e+00 | 3.782901844515613732e+00 | |
3.635857698043066577e+00 | 4.959436928468016426e+00 | |
6.592497514728979269e+00 | 5.546597883501998005e+00 | |
3.582062439948280996e+00 | 4.458467709132122536e+00 | |
3.771577075241911103e+00 | 4.144476579440782515e+00 | |
6.047178878565008020e+00 | 4.195095562092521213e+00 | |
6.562041566717791596e+00 | 5.999590299468253285e+00 | |
3.692504037097535718e+00 | 4.577846728017608058e+00 | |
5.264813869326161466e+00 | 4.966210370977813149e+00 | |
4.675665526939621230e+00 | 4.856374021154375775e+00 | |
3.019227456098200424e+00 | 3.882210691472415043e+00 | |
7.452239364812703215e+00 | 5.590999671544536476e+00 | |
3.290140208430892166e+00 | 3.092350650451614058e+00 | |
4.034959114999810303e+00 | 4.208587727049867055e+00 | |
5.277234629609401928e+00 | 5.073887252876136955e+00 | |
3.381565932216445081e+00 | 3.859644947943503546e+00 | |
5.543248265878447434e+00 | 4.223552049762244742e+00 | |
4.542968746498096344e+00 | 5.103364116912998405e+00 | |
4.216640317910129276e+00 | 5.531488174471346220e+00 | |
4.826919480529909379e+00 | 5.110250192962319638e+00 | |
3.234659024005596351e+00 | 2.782808047522097539e+00 | |
5.164002699117535400e+00 | 6.137524227330407811e+00 | |
3.491109709392853588e+00 | 4.560326507070159074e+00 | |
3.747684322818487512e+00 | 4.463653857257401825e+00 | |
2.631557404579206061e+00 | 3.810680077780295605e+00 | |
4.618202448019504303e+00 | 4.879526373002174289e+00 | |
5.110483241888807981e+00 | 4.227660138524710121e+00 | |
3.981641979919937846e+00 | 4.275850116939189149e+00 | |
2.516929326594934402e+00 | 3.410414643221471920e+00 | |
4.340529776214475000e+00 | 4.771591962950004984e+00 | |
5.538640596404214911e+00 | 6.053727795817375856e+00 | |
2.382706257509240366e+00 | 3.371687230069741581e+00 | |
5.528929395413375580e+00 | 5.068952872238892127e+00 | |
7.662387689588790352e+00 | 6.516257272456609684e+00 | |
4.311819106404988666e+00 | 5.341007306744180561e+00 | |
3.813936401638664542e+00 | 3.964368087128223195e+00 | |
5.015835194682670917e+00 | 5.826351690512113990e+00 | |
5.404471214912787147e+00 | 4.879418807115609269e+00 | |
2.746230762522405833e+00 | 4.360944122001010115e+00 | |
5.167065305510847750e+00 | 4.671847469164904787e+00 | |
7.577509381169400982e+00 | 7.021433152252534171e+00 | |
6.871477368375198402e+00 | 4.730628347113916554e+00 | |
2.608144181141580642e+00 | 3.992527964702659027e+00 | |
6.962293212730673808e+00 | 5.330449650572357534e+00 | |
4.086493895623882544e+00 | 3.797539187312653830e+00 | |
3.015702983515077928e+00 | 4.221520907445161619e+00 | |
4.129944725999049382e+00 | 4.756304727970604773e+00 | |
4.450395049721548091e+00 | 5.300054292929890387e+00 | |
5.597060512308556390e+00 | 5.431451454013179969e+00 | |
3.782107863215861343e+00 | 4.656337238218758223e+00 | |
6.807351191065901475e+00 | 5.753435560964771156e+00 | |
4.784617841029140450e+00 | 4.570446467016457071e+00 | |
2.685135258279417680e+00 | 3.283692394247896384e+00 | |
4.973271518645657530e+00 | 5.542504636831901976e+00 | |
4.592263240593095652e+00 | 4.642456752831634503e+00 | |
5.943256160165590885e+00 | 5.802027152570249591e+00 | |
3.414138971156594593e+00 | 4.367967038012520398e+00 | |
5.506765338295005918e+00 | 6.575039071204914265e+00 | |
7.505289392365487089e+00 | 5.398465568903256795e+00 | |
3.604526382974419629e+00 | 4.301632586524376300e+00 | |
6.113267131545713440e+00 | 4.889878572262613687e+00 | |
1.767647929569800436e+00 | 3.087368055130210287e+00 | |
4.161448037321749283e+00 | 4.712703427894566310e+00 | |
4.226050860051044467e+00 | 4.914074720659180606e+00 | |
4.113821983329325249e+00 | 4.179696834001652483e+00 | |
5.967103359291515474e+00 | 4.332775634176288193e+00 | |
5.985906990106387937e+00 | 5.806299006136852903e+00 | |
3.367008978546683906e+00 | 4.425983737286928843e+00 | |
5.879352541440875157e+00 | 4.625720917849820424e+00 | |
8.448485861194694024e+00 | 7.968065185568676156e+00 | |
5.956719237637035036e+00 | 5.265456107221138105e+00 | |
5.275598113002361700e+00 | 4.149129850975355360e+00 | |
4.823967977553444086e+00 | 6.361344652753457396e+00 | |
4.187667428093589272e+00 | 4.758960650750300836e+00 | |
6.449126342684195379e+00 | 7.525681526099349483e+00 | |
6.333708013171743367e+00 | 7.220927570676090923e+00 | |
7.454493948641737866e+00 | 7.538018444063736112e+00 | |
3.040806119080365910e+00 | 3.190183303920648861e+00 | |
4.240480794475960380e+00 | 4.928359234768571184e+00 | |
6.590938867585149907e+00 | 4.930408721908992931e+00 | |
6.637898100901413301e+00 | 6.405342176267256882e+00 | |
5.300504096782173491e+00 | 4.775733046278582528e+00 | |
3.504276717355443438e+00 | 4.444725116848781354e+00 | |
6.430099270833155245e+00 | 5.011125968390556906e+00 | |
4.454463428007167991e+00 | 4.272262676796513503e+00 | |
4.351285637430371445e+00 | 5.744320715406942668e+00 | |
4.588772023850451021e+00 | 4.119373487798433153e+00 | |
5.088401951697264280e+00 | 4.362498338510696350e+00 | |
2.968527182606796710e+00 | 3.336469907218678088e+00 | |
4.614727916537145092e+00 | 4.985469560260662014e+00 | |
5.417181666064109891e+00 | 3.834863340023769496e+00 | |
7.137805315984111942e+00 | 5.992584633852501064e+00 | |
4.605106980232461567e+00 | 4.655840233209800338e+00 | |
6.755530097431813985e+00 | 5.105289654847687153e+00 | |
5.704913638407424159e+00 | 5.095292817857583145e+00 | |
4.400168467210518131e+00 | 4.392199484780826779e+00 | |
4.363657500903640241e+00 | 4.174680360101931775e+00 | |
5.465382632260903151e+00 | 5.034751787982468585e+00 | |
5.873722384459934887e+00 | 5.994165419276519913e+00 | |
6.289310421930725425e+00 | 5.417842921436069048e+00 | |
5.522184762426568305e+00 | 4.380126436565372927e+00 | |
5.678352048297551136e+00 | 4.902450301392180521e+00 | |
5.553720201311391769e+00 | 5.298677662108907782e+00 | |
6.172493604356852792e+00 | 5.564746485660974074e+00 | |
3.207154449088188031e+00 | 3.873216763224361259e+00 | |
3.311098982013582770e+00 | 4.207944715085496057e+00 | |
4.186096305982309751e+00 | 3.934302476520792347e+00 | |
4.812096728510534049e+00 | 4.981162824951844925e+00 | |
6.110560120184285182e+00 | 5.088544129976873442e+00 | |
6.565049100259230386e+00 | 7.054262612102507823e+00 | |
5.900984014144982304e+00 | 6.534925605854935426e+00 | |
5.923690213115838432e+00 | 4.944233884411527669e+00 | |
4.348262604113990903e+00 | 4.138616348589725824e+00 | |
4.325720519000554098e+00 | 4.341470461840053474e+00 | |
4.653335131173634842e+00 | 4.082320977909154713e+00 | |
3.697191498404362786e+00 | 4.549352971641111409e+00 | |
5.407048711315879608e+00 | 7.171775138771779190e+00 | |
3.512366566843928339e+00 | 5.744713711245143628e+00 | |
2.858776445788936638e+00 | 3.539454567390944550e+00 | |
5.698535224678084710e+00 | 5.138588256120573128e+00 | |
7.744908746362150431e+00 | 6.190893094581540801e+00 | |
4.164542038860413520e+00 | 5.592331647758189916e+00 | |
5.777031686054403536e+00 | 6.121083623862272560e+00 | |
6.914553753434613981e+00 | 5.757272859574213975e+00 | |
5.509079496397593090e+00 | 5.584764994840988095e+00 | |
4.057883482799093500e+00 | 5.116922175089669622e+00 | |
3.860023801385615627e+00 | 4.472128012839488242e+00 | |
3.946563839760922399e+00 | 5.503075752118173902e+00 | |
5.451505068449132629e+00 | 5.841918549846811359e+00 | |
7.355046012789468790e+00 | 6.754350301663810896e+00 | |
5.664300505529603846e+00 | 5.412428364544784820e+00 | |
3.514948079999386632e+00 | 4.201808167975073616e+00 | |
3.302788656000184453e+00 | 5.021818517792234537e+00 | |
4.083963788896100233e+00 | 5.284669622099574582e+00 | |
5.452140178062203191e+00 | 5.273473169103079172e+00 | |
5.380439952787833491e+00 | 5.992892399768614986e+00 | |
4.594862614492823738e+00 | 4.381083917406719763e+00 | |
4.448690529208093380e+00 | 5.416015739033607446e+00 | |
5.362374713564605599e+00 | 4.534519846344413629e+00 | |
5.461963814456063382e+00 | 3.846544207490738110e+00 | |
4.078775615747667338e+00 | 4.124539608853591943e+00 |
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
import numpy as np | |
import matplotlib.pyplot as plt | |
from sklearn import svm | |
x1 = np.genfromtxt("class1.csv", delimiter = ",") | |
x2 = np.genfromtxt("class2.csv", delimiter = ",") | |
x3 = np.genfromtxt("class3.csv", delimiter = ",") | |
y1 = np.zeros(x1.shape[0]) | |
y2 = np.ones(x2.shape[0]) | |
y3 = np.arange(x3.shape[0]) | |
y3.fill(2) | |
x = np.concatenate((x1, x2, x3), axis = 0) | |
y = np.concatenate((y1, y2, y3)) | |
xmin, xmax = x[:, 0].min() - 0.1, x[:, 0].max() + 0.1 | |
ymin, ymax = x[:, 1].min() - 0.1, x[:, 1].max() + 0.1 | |
clf = svm.LinearSVC() | |
y_pred = clf.fit(x, y).predict(x) | |
print "Number of mislabeled points: %d" % (y != y_pred).sum() | |
xx, yy = np.meshgrid(np.arange(xmin, xmax, 0.01), np.arange(ymin, ymax, 0.01)) | |
xnew = np.c_[xx.ravel(), yy.ravel()] | |
ynew = clf.fit(x, y).predict(xnew).reshape(xx.shape) | |
fig = plt.figure(1) | |
plt.set_cmap(plt.cm.Paired) | |
plt.pcolormesh(xx, yy, ynew) | |
plt.plot(x1[:, 0], x1[:, 1], 'ob', x2[:, 0], x2[:, 1], 'or', x3[:, 0], x3[:, 1], 'og') | |
plt.savefig("linearsvm_simple.png") |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment