Last active
June 22, 2018 10:40
-
-
Save mataney/cf0459589e833df5ec8b3bd8dd8baca8 to your computer and use it in GitHub Desktop.
UNet implementation
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
class UNet(nn.Module): | |
def __init__(self, in_dim, out_dim, num_filter, lr): | |
super(UNet, self).__init__() | |
self.in_dim = in_dim | |
self.out_dim = out_dim | |
self.num_filter = num_filter | |
act_fn = nn.LeakyReLU(0.2, inplace=True) | |
def conv_block(in_dim, out_dim, act_fn): | |
model = nn.Sequential( | |
nn.Conv2d(in_dim, out_dim, kernel_size=3, stride=1, padding=1), | |
nn.BatchNorm2d(out_dim), | |
act_fn, | |
) | |
return model | |
def conv_act_conv(in_dim, out_dim, act_fn): | |
model = nn.Sequential( | |
conv_block(in_dim, out_dim, act_fn), | |
nn.Conv2d(out_dim, out_dim, kernel_size=3, stride=1, padding=1), | |
nn.BatchNorm2d(out_dim), | |
) | |
return model | |
def maxpool(): | |
pool = nn.MaxPool2d(kernel_size=2, stride=2, padding=0) | |
return pool | |
def deconv_block(in_dim, out_dim, act_fn): | |
model = nn.Sequential( | |
nn.ConvTranspose2d(in_dim, out_dim, kernel_size=3, stride=2, padding=1, output_padding=1), | |
nn.BatchNorm2d(out_dim), | |
act_fn, | |
) | |
return model | |
self.down_1 = conv_act_conv(self.in_dim, self.num_filter, act_fn) | |
self.pool_1 = maxpool() | |
self.down_2 = conv_act_conv(self.num_filter*1, self.num_filter*2, act_fn) | |
self.pool_2 = maxpool() | |
self.down_3 = conv_act_conv(self.num_filter*2, self.num_filter*4, act_fn) | |
self.pool_3 = maxpool() | |
self.down_4 = conv_act_conv(self.num_filter*4, self.num_filter*8, act_fn) | |
self.pool_4 = maxpool() | |
self.bridge = conv_act_conv(self.num_filter*8, self.num_filter*16, act_fn) | |
self.trans_1 = deconv_block(self.num_filter*16, self.num_filter*8, act_fn) | |
self.up_1 = conv_act_conv(self.num_filter*16, self.num_filter*8, act_fn) | |
self.trans_2 = deconv_block(self.num_filter*8, self.num_filter*4, act_fn) | |
self.up_2 = conv_act_conv(self.num_filter*8, self.num_filter*4, act_fn) | |
self.trans_3 = deconv_block(self.num_filter*4, self.num_filter*2, act_fn) | |
self.up_3 = conv_act_conv(self.num_filter*4, self.num_filter*2, act_fn) | |
self.trans_4 = deconv_block(self.num_filter*2, self.num_filter*1, act_fn) | |
self.up_4 = conv_act_conv(self.num_filter*2, self.num_filter*1, act_fn) | |
self.out = nn.Sequential( | |
nn.Conv2d(self.num_filter, self.out_dim, 3, 1, 1), | |
nn.Tanh(), | |
) | |
self.optim = torch.optim.RMSprop(self.parameters(), lr=lr) | |
for param in self.parameters(): | |
if param.dim() > 1: | |
nn.init.xavier_uniform_(param) | |
def forward(self, input): | |
down_1 = self.down_1(input) | |
pool_1 = self.pool_1(down_1) | |
down_2 = self.down_2(pool_1) | |
pool_2 = self.pool_2(down_2) | |
down_3 = self.down_3(pool_2) | |
pool_3 = self.pool_3(down_3) | |
down_4 = self.down_4(pool_3) | |
pool_4 = self.pool_4(down_4) | |
bridge = self.bridge(pool_4) | |
trans_1 = self.trans_1(bridge) | |
concat_1 = torch.cat([trans_1, down_4], dim=1) | |
up_1 = self.up_1(concat_1) | |
trans_2 = self.trans_2(up_1) | |
concat_2 = torch.cat([trans_2, down_3], dim=1) | |
up_2 = self.up_2(concat_2) | |
trans_3 = self.trans_3(up_2) | |
concat_3 = torch.cat([trans_3, down_2], dim=1) | |
up_3 = self.up_3(concat_3) | |
trans_4 = self.trans_4(up_3) | |
concat_4 = torch.cat([trans_4, down_1], dim=1) | |
up_4 = self.up_4(concat_4) | |
out = self.out(up_4) | |
return out |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment