Created
December 13, 2020 09:56
-
-
Save matejsarlija/9484e88f6af012f0f9286d2f5057ab4c to your computer and use it in GitHub Desktop.
Find optimal parameters for CatBoost using GridSearchCV for Regression in Python
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
"""source : https://nilimeshhalder.medium.com/how-to-find-optimal-parameters-for-catboost-using-gridsearchcv-for-regression-in-python-ef778b60d95d""" | |
def Snippet_199(): | |
print() | |
print(format('How to find optimal parameters for CatBoost using GridSearchCV for Regression','*^82')) | |
import warnings | |
warnings.filterwarnings("ignore") | |
# load libraries | |
from sklearn import datasets | |
from sklearn.model_selection import train_test_split | |
from sklearn.model_selection import GridSearchCV | |
from catboost import CatBoostRegressor | |
# load the iris datasets | |
dataset = datasets.load_boston() | |
X = dataset.data; y = dataset.target | |
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.25) | |
model = CatBoostRegressor() | |
parameters = {'depth' : [6,8,10], | |
'learning_rate' : [0.01, 0.05, 0.1], | |
'iterations' : [30, 50, 100] | |
} | |
grid = GridSearchCV(estimator=model, param_grid = parameters, cv = 2, n_jobs=-1) | |
grid.fit(X_train, y_train) | |
# Results from Grid Search | |
print("\n========================================================") | |
print(" Results from Grid Search " ) | |
print("========================================================") | |
print("\n The best estimator across ALL searched params:\n", | |
grid.best_estimator_) | |
print("\n The best score across ALL searched params:\n", | |
grid.best_score_) | |
print("\n The best parameters across ALL searched params:\n", | |
grid.best_params_) | |
print("\n ========================================================") | |
Snippet_199() |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment