Created
June 4, 2016 15:20
-
-
Save math314/0dcd8e7e5b28e2e08cff5d4ba642f6d1 to your computer and use it in GitHub Desktop.
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
#include <bits/stdc++.h> | |
using namespace std; | |
using ll = long long; | |
const int MOD = int(1e9) + 7; | |
//素数列挙 | |
bool prime[1000001]; //10^6 | |
vector<int> prs; | |
void init_prime() { | |
memset(prime, 1, sizeof(prime)); | |
prime[0] = prime[1] = false; | |
for (int i = 2; i < sizeof(prime); i++) if (prime[i]) | |
for (int j = i * 2; j < sizeof(prime); j += i) prime[j] = false; | |
for (int i = 2; i < sizeof(prime); i++) if (prime[i]) prs.push_back(i); | |
} | |
ll prime_sum_small_part_memo[sizeof(prime)]; | |
void init_prime_sum_small_part() { | |
for (int i = 0; i < sizeof(prime) - 1; i++) { | |
prime_sum_small_part_memo[i + 1] = prime_sum_small_part_memo[i]; | |
if (prime[i + 1]) prime_sum_small_part_memo[i + 1] += i + 1; | |
} | |
} | |
ll prime_sum(ll n) { | |
int n2 = (int)sqrt(n); | |
while (ll(n2 + 1) * (n2 + 1) <= n) n2++; | |
const int k = lower_bound(prs.begin(), prs.end(), n2 + 1) - prs.begin() - 1; | |
vector<ll> n_div_p; | |
for (int i = 1; i <= n2; i++) { | |
n_div_p.push_back(i); | |
n_div_p.push_back(n / i); | |
} | |
sort(n_div_p.begin(), n_div_p.end()); | |
n_div_p.erase(unique(n_div_p.begin(), n_div_p.end()), n_div_p.end()); | |
vector<int> ndp_table(n2 + 1); | |
for (auto x : n_div_p) if (x <= n2) ndp_table[(int)x]++; | |
for(int i = 0; i < n2; i++) ndp_table[i + 1] += ndp_table[i]; | |
vector<ll> dp; | |
for (auto x : n_div_p) { | |
if (x % 2 == 0) dp.push_back((x / 2 % MOD)*((x + 1) % MOD) % MOD - 1); | |
else dp.push_back((x % MOD)*((x + 1) / 2 % MOD) % MOD - 1); | |
} | |
for(int i = 0; i <= k; i++) { | |
const ll p = prs[i]; | |
for (int j = int(n_div_p.size()) - 1; j >= 0; j--) { | |
const ll x = n_div_p[j]; | |
if (x < p * p) break; | |
const ll np = x / p; | |
int n_div_p_idx; | |
if (np <= n2) n_div_p_idx = ndp_table[(int)np] - 1; | |
else n_div_p_idx = int(n_div_p.size()) - ndp_table[(int)(n / np)]; | |
assert(n_div_p[n_div_p_idx] == np); | |
(dp[j] -= p * (dp[n_div_p_idx] - prime_sum_small_part_memo[p - 1])) %= MOD; | |
} | |
} | |
return (dp.back() % MOD + MOD) % MOD; | |
} |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment