Last active
February 12, 2025 03:53
-
-
Save mathematicalmichael/63e04c727225303229ed57a543d966a3 to your computer and use it in GitHub Desktop.
Streamlit App for Insect Segmentation with Segment Anything
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
#!/usr/bin/env python3 | |
""" | |
Streamlit app for segmenting insects using SAM (Segment Anything Model). | |
uv run \ | |
--with streamlit \ | |
--with segment_anything \ | |
--with opencv-python-headless \ | |
--with torch \ | |
--with matplotlib \ | |
streamlit run sam_segment_st.py | |
""" | |
import json | |
import cv2 | |
import numpy as np | |
import streamlit as st | |
import torch | |
from matplotlib import pyplot as plt | |
from segment_anything import SamAutomaticMaskGenerator, sam_model_registry | |
@st.cache_resource | |
def load_sam_model(): | |
"""Load SAM model with caching.""" | |
model_type = "vit_h" # Using the highest quality model | |
checkpoint = "sam_vit_h_4b8939.pth" | |
# Force CPU for now due to MPS float64 issues | |
device = "cpu" | |
st.info(f"Using device: {device}") | |
# Load model | |
sam = sam_model_registry[model_type](checkpoint=checkpoint) | |
sam.to(device=device) | |
return sam, device | |
def process_image(image, mask_generator, min_area=0.0001, max_area=0.1): | |
""" | |
Generate segments using SAM's automatic mask generator. | |
Args: | |
image: RGB image array | |
mask_generator: SAM automatic mask generator | |
min_area: Minimum area as fraction of image area | |
max_area: Maximum area as fraction of image area | |
""" | |
# Ensure image is uint8 | |
if image.dtype != np.uint8: | |
image = (image * 255).astype(np.uint8) | |
# Get image area for filtering | |
image_area = image.shape[0] * image.shape[1] | |
min_area_pixels = image_area * min_area | |
max_area_pixels = image_area * max_area | |
# Generate masks | |
with torch.inference_mode(): | |
masks = mask_generator.generate(image) | |
# Filter masks by area and sort by area | |
filtered_masks = [] | |
for mask in masks: | |
area = mask["area"] | |
if min_area_pixels <= area <= max_area_pixels: | |
filtered_masks.append(mask) | |
# Sort by area, largest first | |
filtered_masks = sorted(filtered_masks, key=lambda x: x["area"], reverse=True) | |
return filtered_masks | |
def plot_results(image, masks): | |
"""Plot original image and segmentation results.""" | |
fig, (ax1, ax2) = plt.subplots(1, 2, figsize=(15, 7)) | |
# Original image | |
ax1.imshow(image) | |
ax1.set_title("Original") | |
ax1.axis("off") | |
# Segmentation | |
ax2.imshow(image) | |
# Plot masks with random colors and transparency | |
for mask in masks: | |
color = np.random.rand( | |
3, | |
).astype( | |
np.float32 | |
) # Force float32 | |
mask_array = mask["segmentation"] | |
# Create mask overlay | |
mask_overlay = np.zeros_like(image, dtype=np.float32) # Force float32 | |
mask_overlay[mask_array] = color | |
# Blend with original image | |
ax2.imshow(mask_overlay, alpha=0.35) | |
# Draw contour | |
contour = mask["bbox"] # [x, y, w, h] | |
rect = plt.Rectangle( | |
(contour[0], contour[1]), | |
contour[2], | |
contour[3], | |
linewidth=1, | |
edgecolor=color, | |
facecolor="none", | |
) | |
ax2.add_patch(rect) | |
ax2.set_title(f"Segmentation ({len(masks)} segments)") | |
ax2.axis("off") | |
plt.tight_layout() | |
return fig | |
def main(): | |
st.title("Insect Segmentation with SAM") | |
# Load SAM model | |
try: | |
sam, device = load_sam_model() | |
mask_generator = SamAutomaticMaskGenerator( | |
model=sam, | |
points_per_side=32, | |
pred_iou_thresh=0.86, | |
stability_score_thresh=0.92, | |
crop_n_layers=1, | |
crop_n_points_downscale_factor=2, | |
min_mask_region_area=100, # Minimum area in pixels | |
) | |
except FileNotFoundError: | |
st.error( | |
""" | |
Please download the SAM checkpoint file: | |
wget https://dl.fbaipublicfiles.com/segment_anything/sam_vit_h_4b8939.pth | |
""" | |
) | |
return | |
# File uploader | |
uploaded_file = st.file_uploader("Choose an image...", type=["jpg", "jpeg", "png"]) | |
if uploaded_file is not None: | |
# Convert uploaded file to numpy array | |
file_bytes = np.asarray(bytearray(uploaded_file.read()), dtype=np.uint8) | |
image = cv2.imdecode(file_bytes, cv2.IMREAD_COLOR) | |
image = cv2.cvtColor(image, cv2.COLOR_BGR2RGB) | |
# Parameter controls | |
col1, col2 = st.columns(2) | |
with col1: | |
min_area_pct = st.slider( | |
"Minimum Area (%)", | |
min_value=0.01, | |
max_value=1.0, | |
value=0.05, | |
step=0.01, | |
help="Minimum segment area as percentage of image area", | |
) | |
pred_iou_thresh = st.slider( | |
"Prediction IoU Threshold", | |
min_value=0.0, | |
max_value=1.0, | |
value=0.86, | |
help="Higher values = more selective segmentation", | |
) | |
with col2: | |
max_area_pct = st.slider( | |
"Maximum Area (%)", | |
min_value=1.0, | |
max_value=20.0, | |
value=5.0, | |
step=0.1, | |
help="Maximum segment area as percentage of image area", | |
) | |
stability_score_thresh = st.slider( | |
"Stability Score Threshold", | |
min_value=0.0, | |
max_value=1.0, | |
value=0.92, | |
help="Higher values = more stable segments", | |
) | |
# Process image | |
with st.spinner("Processing image with SAM..."): | |
masks = process_image( | |
image, | |
mask_generator, | |
min_area=min_area_pct / 100, | |
max_area=max_area_pct / 100, | |
) | |
# Plot results | |
fig = plot_results(image, masks) | |
st.pyplot(fig) | |
# Add download button for masks | |
if st.button("Download Masks as JSON"): | |
# Convert masks to JSON-serializable format | |
masks_json = [ | |
{ | |
"segmentation": mask["segmentation"].tolist(), | |
"area": float(mask["area"]), | |
"bbox": [float(x) for x in mask["bbox"]], | |
} | |
for mask in masks | |
] | |
st.download_button( | |
"Download JSON", | |
data=json.dumps(masks_json), | |
file_name="masks.json", | |
mime="application/json", | |
) | |
if __name__ == "__main__": | |
main() |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment