Skip to content

Instantly share code, notes, and snippets.

@mathematicalmichael
Last active February 11, 2025 06:14
Show Gist options
  • Save mathematicalmichael/fe4ad7234c5ce3a58830e1457e8dd923 to your computer and use it in GitHub Desktop.
Save mathematicalmichael/fe4ad7234c5ce3a58830e1457e8dd923 to your computer and use it in GitHub Desktop.
Semi-Automated Perspective Transform App in Streamlit
"""
Streamlit web interface for perspective warp correction.
Uses core functionality from correct.py.
"""
import pathlib
import tempfile
from io import BytesIO
import cv2
import kornia
import kornia.geometry.transform as kgt
import numpy as np
import streamlit as st
import tifffile
import torch
from correct import (
DEFAULT_PARAMS,
RAW_EXTENSIONS,
crop_image,
detect_document_corners,
warp_perspective_transform,
)
try:
import rawpy
except ImportError:
rawpy = None
# -----------------------------------------------------------
# Helper: Load image from Streamlit file uploader.
# Supports RAW files (using rawpy) and standard formats.
# For raw files, we call postprocess() with custom parameters
# to get a correctly color-balanced view.
# -----------------------------------------------------------
@st.cache_data(show_spinner=False)
def load_image_streamlit(
uploaded_file,
gamma: float = 1.0,
curve: float = 1.0,
use_auto_wb: bool = False,
bright: float = 1.0,
):
"""Load image from Streamlit's UploadedFile object"""
extension = pathlib.Path(uploaded_file.name).suffix.lower()
file_bytes = np.asarray(bytearray(uploaded_file.read()), dtype=np.uint8)
if extension in RAW_EXTENSIONS:
if rawpy is None:
st.error(
"rawpy module not found. Please install it via 'pip install rawpy'"
)
return None, None
# Write to temp file since rawpy needs file access
with tempfile.NamedTemporaryFile(delete=False, suffix=extension) as tmp_file:
tmp_file.write(file_bytes)
tmp_filename = tmp_file.name
with rawpy.imread(tmp_filename) as raw:
image = raw.postprocess(
gamma=(gamma, curve),
use_auto_wb=use_auto_wb,
bright=bright,
output_color=rawpy.ColorSpace.sRGB,
)
color_order = "RGB"
else:
image = cv2.imdecode(file_bytes, cv2.IMREAD_COLOR)
if image is None:
st.error("Error loading image.")
return None, None
color_order = "BGR"
return image, color_order
# -----------------------------------------------------------
# Helper: Order 4 points as [top-left, top-right, bottom-right, bottom-left]
# -----------------------------------------------------------
def order_points(pts: np.ndarray) -> np.ndarray:
s = pts.sum(axis=1)
tl = pts[np.argmin(s)]
br = pts[np.argmax(s)]
diff = np.diff(pts, axis=1)
tr = pts[np.argmin(diff)]
bl = pts[np.argmax(diff)]
return np.array([tl, tr, br, bl], dtype="float32")
# -----------------------------------------------------------
# Detect document/frame corners using either Canny or Adaptive thresholding.
#
# Returns:
# - corners: a 4x2 array if detected (or None)
# - debug_info: a dictionary of intermediate images and info.
#
# This version downsizes the grayscale for processing and then scales
# the detected corners back up.
# -----------------------------------------------------------
@st.cache_data(show_spinner=False)
def detect_document_corners_custom(image, color_order, detection_method, params):
debug_info = {}
# Convert to grayscale.
if len(image.shape) == 3 and image.shape[2] == 3:
if color_order.upper() == "BGR":
gray = cv2.cvtColor(image, cv2.COLOR_BGR2GRAY)
else:
gray = cv2.cvtColor(image, cv2.COLOR_RGB2GRAY)
else:
gray = image.copy()
debug_info["Grayscale"] = gray
# Downscale for processing if required.
downscale_factor = params.get("downscale_factor", 1)
if downscale_factor > 1:
h, w = gray.shape
gray = cv2.resize(gray, (w // downscale_factor, h // downscale_factor))
# Blur the image.
blur_kernel = params.get("blur_kernel_size", 5)
# Ensure the kernel size is odd.
if blur_kernel % 2 == 0:
blur_kernel += 1
blurred = cv2.GaussianBlur(gray, (blur_kernel, blur_kernel), 0)
debug_info["Blurred"] = blurred
corners = None
method_used = None
# --- Adaptive threshold approach (default and primary) ---
if detection_method in ["Adaptive", "Auto"]:
block_size = params.get("adaptive_block_size", 11)
adaptive_C = params.get("adaptive_C", 2)
# Ensure block_size is odd.
if block_size % 2 == 0:
block_size += 1
thresh = cv2.adaptiveThreshold(
blurred,
255,
cv2.ADAPTIVE_THRESH_GAUSSIAN_C,
cv2.THRESH_BINARY,
block_size,
adaptive_C,
)
debug_info["Adaptive Threshold"] = thresh
cnts, _ = cv2.findContours(
thresh.copy(), cv2.RETR_LIST, cv2.CHAIN_APPROX_SIMPLE
)
cnts = sorted(cnts, key=cv2.contourArea, reverse=True)
approx_factor_adaptive = params.get("adaptive_approx", 0.02)
for c in cnts:
peri = cv2.arcLength(c, True)
approx = cv2.approxPolyDP(c, approx_factor_adaptive * peri, True)
if len(approx) == 4:
pts = approx.reshape(4, 2)
corners = order_points(pts)
method_used = "Adaptive"
break
# --- Canny-based approach (if forced) ---
if corners is None and detection_method in ["Canny"]:
canny_low = params.get("canny_low", 50)
canny_high = params.get("canny_high", 150)
edges = cv2.Canny(blurred, canny_low, canny_high)
debug_info["Canny Edges"] = edges
cnts, _ = cv2.findContours(edges.copy(), cv2.RETR_LIST, cv2.CHAIN_APPROX_SIMPLE)
cnts = sorted(cnts, key=cv2.contourArea, reverse=True)
approx_factor = params.get("canny_approx", 0.1)
for c in cnts:
peri = cv2.arcLength(c, True)
approx = cv2.approxPolyDP(c, approx_factor * peri, True)
if len(approx) == 4:
pts = approx.reshape(4, 2)
corners = order_points(pts)
method_used = "Canny"
break
# Create an overlay to draw the detected corners.
corners_overlay = image.copy()
if corners is not None:
# If we downscaled before processing, scale corners back.
if downscale_factor > 1:
corners = corners * downscale_factor
for x, y in corners:
cv2.circle(corners_overlay, (int(x), int(y)), 10, (0, 255, 0), -1)
debug_info["Detected Corners Overlay"] = corners_overlay
debug_info["Method Used"] = method_used
return corners, debug_info
# -----------------------------------------------------------
# Warp perspective using Kornia.
# -----------------------------------------------------------
@st.cache_data(show_spinner=False)
def warp_perspective_transform(image, src_pts):
src = order_points(src_pts)
widthA = np.linalg.norm(src[2] - src[3])
widthB = np.linalg.norm(src[1] - src[0])
maxWidth = int(max(widthA, widthB))
heightA = np.linalg.norm(src[1] - src[2])
heightB = np.linalg.norm(src[0] - src[3])
maxHeight = int(max(heightA, heightB))
if maxWidth <= 0 or maxHeight <= 0:
return None
dst = np.array(
[[0, 0], [maxWidth - 1, 0], [maxWidth - 1, maxHeight - 1], [0, maxHeight - 1]],
dtype="float32",
)
src_tensor = torch.from_numpy(src).unsqueeze(0)
dst_tensor = torch.from_numpy(dst).unsqueeze(0)
M = kgt.get_perspective_transform(src_tensor, dst_tensor)
if len(image.shape) == 2:
image = image[:, :, np.newaxis]
image_tensor = torch.from_numpy(image).permute(2, 0, 1).unsqueeze(0).float()
warped_tensor = kgt.warp_perspective(image_tensor, M, dsize=(maxHeight, maxWidth))
warped = warped_tensor.squeeze(0).permute(1, 2, 0).cpu().numpy()
warped = np.clip(warped, 0, 255).astype(np.uint8)
return warped
def main():
"""Main Streamlit app"""
st.title("Perspective Warp Debugger")
# File upload
uploaded_file = st.file_uploader(
"Upload an image",
type=["jpg", "jpeg", "png", "nef", "cr2", "arw", "raf", "raw", "dng", "rw2"],
)
if not uploaded_file:
return
# Load image
with st.sidebar.expander("Image Processing Parameters", expanded=True):
gamma = st.slider(
"Gamma",
0.1,
5.0,
DEFAULT_PARAMS["gamma"],
0.1,
help="Gamma correction for the image.",
)
curve = st.slider(
"Curve",
0.1,
5.0,
DEFAULT_PARAMS["curve"],
0.1,
help="Curve correction for the image.",
)
use_auto_wb = st.checkbox(
"Use Auto White Balance",
value=DEFAULT_PARAMS["use_auto_wb"],
help="Use auto white balance for the image.",
)
bright = st.slider("Brightness", 0.1, 5.0, DEFAULT_PARAMS["bright"], 0.1)
st.markdown("---")
st.markdown("### Crop Settings")
# Use columns for a more compact layout
col1, col2 = st.columns(2)
with col1:
crop_top = st.slider(
"Crop Top",
0.0,
0.4,
DEFAULT_PARAMS["crop_top"],
0.01,
help="Percentage to crop from top edge",
)
crop_bottom = st.slider(
"Crop Bottom",
0.0,
0.4,
DEFAULT_PARAMS["crop_bottom"],
0.01,
help="Percentage to crop from bottom edge",
)
with col2:
crop_left = st.slider(
"Crop Left",
0.0,
0.4,
DEFAULT_PARAMS["crop_left"],
0.01,
help="Percentage to crop from left edge",
)
crop_right = st.slider(
"Crop Right",
0.0,
0.4,
DEFAULT_PARAMS["crop_right"],
0.01,
help="Percentage to crop from right edge",
)
image, color_order = load_image_streamlit(
uploaded_file, gamma=gamma, curve=curve, use_auto_wb=use_auto_wb, bright=bright
)
if image is None:
return
# Apply cropping
image = crop_image(
image,
crop_top=crop_top,
crop_bottom=crop_bottom,
crop_left=crop_left,
crop_right=crop_right,
)
# Display original
disp_image = (
cv2.cvtColor(image, cv2.COLOR_BGR2RGB)
if color_order.upper() == "BGR"
else image.copy()
)
st.image(
disp_image, caption="Original Image (After Cropping)", use_container_width=True
)
# Parameter controls
st.sidebar.header("Processing Parameters")
params = {}
params["downscale_factor"] = st.sidebar.number_input(
"Downscale Factor (for processing)",
min_value=1,
value=DEFAULT_PARAMS["downscale_factor"],
step=1,
help="Downscale factor to speed up processing on very high-res images.",
)
params["blur_kernel_size"] = st.sidebar.slider(
"Gaussian Blur Kernel Size (odd)",
3,
21,
DEFAULT_PARAMS["blur_kernel_size"],
step=2,
)
params["canny_low"] = st.sidebar.slider(
"Canny Low Threshold", 0, 255, DEFAULT_PARAMS["canny_low"]
)
params["canny_high"] = st.sidebar.slider(
"Canny High Threshold", 0, 255, DEFAULT_PARAMS["canny_high"]
)
params["canny_approx"] = st.sidebar.slider(
"Contour Approx Factor (Canny)",
0.01,
0.2,
DEFAULT_PARAMS["canny_approx"],
step=0.01,
)
params["adaptive_block_size"] = st.sidebar.slider(
"Adaptive Threshold Block Size (odd)",
3,
25,
DEFAULT_PARAMS["adaptive_block_size"],
step=2,
)
params["adaptive_C"] = st.sidebar.slider(
"Adaptive Threshold Constant", 0, 10, DEFAULT_PARAMS["adaptive_C"]
)
params["adaptive_approx"] = st.sidebar.slider(
"Contour Approx Factor (Adaptive)",
0.01,
0.2,
DEFAULT_PARAMS["adaptive_approx"],
step=0.01,
)
detection_method = st.sidebar.radio(
"Detection Method", ["Adaptive", "Canny", "Auto"], index=0
).lower()
# Process image
corners, debug_info = detect_document_corners(
image, color_order, method=detection_method, params=params
)
# Show results
method_used = debug_info.get("Method Used")
st.write(f"Detection method used: **{method_used}**")
if corners is None:
st.error("Could not detect a 4-corner contour. Try adjusting parameters.")
return
st.success("Detected corners!")
# Show debug images
for key in ["Grayscale", "Blurred", "Canny Edges", "Adaptive Threshold"]:
if key not in debug_info:
continue
img = debug_info[key]
if len(img.shape) == 2:
st.image(img, caption=key, use_container_width=True)
else:
img_disp = (
cv2.cvtColor(img, cv2.COLOR_BGR2RGB)
if color_order.upper() == "BGR"
else img.copy()
)
st.image(img_disp, caption=key, use_container_width=True)
# Apply warp
warped = warp_perspective_transform(image, corners)
if warped is None:
st.error("Warping failed due to invalid dimensions.")
return
# Show warped image
warped_disp = (
cv2.cvtColor(warped, cv2.COLOR_BGR2RGB)
if color_order.upper() == "BGR"
else warped.copy()
)
st.image(
warped_disp,
caption="Warped (Perspective Corrected) Image",
use_container_width=True,
)
# Save/download functionality
base_name = pathlib.Path(uploaded_file.name).stem
output_filename = f"{base_name}.tiff"
buf = BytesIO()
tifffile.imwrite(buf, warped)
buf.seek(0)
st.sidebar.download_button(
label="Save Output Image",
data=buf,
file_name=output_filename,
mime="image/tiff",
key="download",
)
if __name__ == "__main__":
main()
#!/usr/bin/env python3
"""
Core functionality for perspective warp correction using Kornia.
Provides both programmatic API and CLI interface.
Supports RAW files (using rawpy) and standard image formats.
Usage:
python correct.py /path/to/your/image.jpg [--method {adaptive,canny,auto}] [--debug] [--params key=value...]
"""
import argparse
import ast
import pathlib
from typing import Dict, Optional, Tuple, Union
import cv2
import kornia.geometry.transform as kgt
import numpy as np
import torch
from tifffile import TiffWriter
# List of common RAW file extensions (lowercase)
RAW_EXTENSIONS = {".nef", ".cr2", ".arw", ".raf", ".raw", ".dng", ".rw2"}
try:
import rawpy
except ImportError:
rawpy = None
# Default processing parameters
DEFAULT_PARAMS = {
"downscale_factor": 5,
"blur_kernel_size": 5,
"canny_low": 50,
"canny_high": 150,
"canny_approx": 0.1,
"adaptive_block_size": 11,
"adaptive_C": 2,
"adaptive_approx": 0.02,
"gamma": 1.0,
"curve": 1.0,
"use_auto_wb": True,
"bright": 1.0,
"crop_top": 0.0,
"crop_bottom": 0.0,
"crop_left": 0.0,
"crop_right": 0.0,
}
def load_image(
image_path: Union[str, pathlib.Path],
gamma: float = 1.0,
curve: float = 1.0,
use_auto_wb: bool = True,
bright: float = 1.0,
output_color: Optional[str] = "sRGB",
) -> Tuple[np.ndarray, str]:
"""
Load an image from a file path, supporting both RAW and standard formats.
Args:
image_path: Path to the image file
gamma: Gamma correction value (default: 2.2)
curve: Toe slope for dark areas (default: 4.5)
use_auto_wb: Whether to use auto white balance (default: True)
bright: Brightness adjustment (default: 1.0)
output_color: Color space for RAW output (default: "sRGB")
Returns:
Tuple of (image array, color order string ['RGB' or 'BGR'])
Raises:
ImportError: If RAW file support is needed but rawpy isn't installed
ValueError: If the image cannot be loaded
"""
image_path = pathlib.Path(image_path)
ext = image_path.suffix.lower()
if ext in RAW_EXTENSIONS:
if rawpy is None:
raise ImportError("rawpy module required for RAW file support")
with rawpy.imread(str(image_path)) as raw:
# Convert string color space to rawpy enum
color_space = (
getattr(rawpy.ColorSpace, output_color)
if output_color
else rawpy.ColorSpace.sRGB
)
image = raw.postprocess(
gamma=(gamma, curve),
use_auto_wb=use_auto_wb,
bright=bright,
output_color=color_space,
)
color_order = "RGB"
else:
image = cv2.imread(str(image_path))
if image is None:
raise ValueError(f"Failed to load image: {image_path}")
color_order = "BGR"
return image, color_order
def order_points(pts: np.ndarray) -> np.ndarray:
"""
Order 4 points as [top-left, top-right, bottom-right, bottom-left].
Args:
pts: Array of 4 points (4x2)
Returns:
Ordered array of points as float32
"""
s = pts.sum(axis=1)
tl = pts[np.argmin(s)]
br = pts[np.argmax(s)]
diff = np.diff(pts, axis=1)
tr = pts[np.argmin(diff)]
bl = pts[np.argmax(diff)]
return np.array([tl, tr, br, bl], dtype="float32")
def detect_document_corners(
image: np.ndarray,
color_order: str,
method: str = "adaptive",
params: Optional[Dict] = None,
) -> Tuple[Optional[np.ndarray], Dict]:
"""
Detect document corners using either adaptive thresholding or Canny edge detection.
Args:
image: Input image array
color_order: Color channel order ('RGB' or 'BGR')
method: Detection method ('adaptive', 'canny', or 'auto')
params: Optional dictionary of processing parameters
Returns:
Tuple of (corners array or None, debug info dictionary)
"""
params = {**DEFAULT_PARAMS, **(params or {})}
debug_info = {}
# Convert to grayscale
if len(image.shape) == 3 and image.shape[2] == 3:
gray = cv2.cvtColor(
image,
cv2.COLOR_BGR2GRAY if color_order.upper() == "BGR" else cv2.COLOR_RGB2GRAY,
)
else:
gray = image.copy()
debug_info["Grayscale"] = gray
# Downscale for processing if needed
downscale_factor = params["downscale_factor"]
if downscale_factor > 1:
h, w = gray.shape
gray = cv2.resize(gray, (w // downscale_factor, h // downscale_factor))
# Apply blur
blur_kernel = params["blur_kernel_size"]
if blur_kernel % 2 == 0:
blur_kernel += 1
blurred = cv2.GaussianBlur(gray, (blur_kernel, blur_kernel), 0)
debug_info["Blurred"] = blurred
corners = None
method_used = None
# Try adaptive threshold method
if method.lower() in ["adaptive", "auto"]:
block_size = params["adaptive_block_size"]
if block_size % 2 == 0:
block_size += 1
thresh = cv2.adaptiveThreshold(
blurred,
255,
cv2.ADAPTIVE_THRESH_GAUSSIAN_C,
cv2.THRESH_BINARY,
block_size,
params["adaptive_C"],
)
debug_info["Adaptive Threshold"] = thresh
cnts, _ = cv2.findContours(
thresh.copy(), cv2.RETR_LIST, cv2.CHAIN_APPROX_SIMPLE
)
cnts = sorted(cnts, key=cv2.contourArea, reverse=True)
for c in cnts:
peri = cv2.arcLength(c, True)
approx = cv2.approxPolyDP(c, params["adaptive_approx"] * peri, True)
if len(approx) == 4:
corners = order_points(approx.reshape(4, 2))
method_used = "Adaptive"
break
# Try Canny method if needed
if corners is None and method.lower() in ["canny", "auto"]:
edges = cv2.Canny(blurred, params["canny_low"], params["canny_high"])
debug_info["Canny Edges"] = edges
cnts, _ = cv2.findContours(edges.copy(), cv2.RETR_LIST, cv2.CHAIN_APPROX_SIMPLE)
cnts = sorted(cnts, key=cv2.contourArea, reverse=True)
for c in cnts:
peri = cv2.arcLength(c, True)
approx = cv2.approxPolyDP(c, params["canny_approx"] * peri, True)
if len(approx) == 4:
corners = order_points(approx.reshape(4, 2))
method_used = "Canny"
break
# Scale corners back up if needed
if corners is not None and downscale_factor > 1:
corners = corners * downscale_factor
debug_info["Method Used"] = method_used
return corners, debug_info
def warp_perspective_transform(
image: np.ndarray, src_pts: np.ndarray
) -> Optional[np.ndarray]:
"""
Apply perspective warp transformation using Kornia.
Args:
image: Input image array
src_pts: Source points (4x2 array)
Returns:
Warped image array or None if warping fails
"""
src = order_points(src_pts)
# Calculate output dimensions
widthA = np.linalg.norm(src[2] - src[3])
widthB = np.linalg.norm(src[1] - src[0])
maxWidth = int(max(widthA, widthB))
heightA = np.linalg.norm(src[1] - src[2])
heightB = np.linalg.norm(src[0] - src[3])
maxHeight = int(max(heightA, heightB))
if maxWidth <= 0 or maxHeight <= 0:
return None
# Define destination points
dst = np.array(
[[0, 0], [maxWidth - 1, 0], [maxWidth - 1, maxHeight - 1], [0, maxHeight - 1]],
dtype="float32",
)
# Convert to torch tensors
src_tensor = torch.from_numpy(src).unsqueeze(0)
dst_tensor = torch.from_numpy(dst).unsqueeze(0)
M = kgt.get_perspective_transform(src_tensor, dst_tensor)
# Ensure image has channels dimension
if len(image.shape) == 2:
image = image[:, :, np.newaxis]
# Apply transformation
image_tensor = torch.from_numpy(image).permute(2, 0, 1).unsqueeze(0).float()
warped_tensor = kgt.warp_perspective(image_tensor, M, dsize=(maxHeight, maxWidth))
warped = warped_tensor.squeeze(0).permute(1, 2, 0).cpu().numpy()
return np.clip(warped, 0, 255).astype(np.uint8)
def save_image(
image: np.ndarray,
output_path: str | pathlib.Path,
suffix: str = "",
format: str = "tiff",
) -> pathlib.Path:
"""
Save an image using TiffWriter with consistent naming convention.
Args:
image: numpy array of the image
output_path: original image path or desired output path
suffix: suffix to append to filename (default: "-w")
format: output format ('dng' or 'tiff', default: 'tiff')
Returns:
Path to saved file
"""
output_path = pathlib.Path(output_path)
extension = ".tiff"
save_path = output_path.parent / f"{output_path.stem}{suffix}{extension}"
with TiffWriter(str(save_path)) as tif:
tif.write(
image,
photometric="rgb",
software="correct.py",
datetime=True,
compression="lzw",
)
return save_path
def crop_image(
image: np.ndarray,
crop_top: float = 0.0,
crop_bottom: float = 0.0,
crop_left: float = 0.0,
crop_right: float = 0.0,
) -> np.ndarray:
"""
Crop image by percentage from each edge.
Args:
image: Input image array
crop_top: Percentage to crop from top (0.0-1.0)
crop_bottom: Percentage to crop from bottom (0.0-1.0)
crop_left: Percentage to crop from left (0.0-1.0)
crop_right: Percentage to crop from right (0.0-1.0)
Returns:
Cropped image array
"""
h, w = image.shape[:2]
# Calculate pixel values from percentages
top = int(h * crop_top)
bottom = int(h * (1 - crop_bottom))
left = int(w * crop_left)
right = int(w * (1 - crop_right))
# Ensure we don't crop everything
if bottom <= top or right <= left:
return image
return image[top:bottom, left:right]
def main():
"""CLI entry point"""
parser = argparse.ArgumentParser(description=__doc__)
# Input path
parser.add_argument("image_path", help="Path to input image")
# Image loading parameters
parser.add_argument(
"-g",
"--gamma",
type=float,
default=1.0,
help="Gamma correction value (default: 1.0)",
)
parser.add_argument(
"-c",
"--curve",
type=float,
default=1.0,
help="Toe slope for dark areas (default: 1.0)",
)
parser.add_argument(
"-b",
"--bright",
type=float,
default=1.0,
help="Brightness adjustment (default: 1.0)",
)
parser.add_argument(
"-w",
"--use-auto-wb",
action="store_true",
default=True,
help="Use auto white balance (default: True)",
)
parser.add_argument(
"--output-color",
type=str,
default="sRGB",
choices=["sRGB", "Adobe", "Wide", "ProPhoto", "XYZ"],
help="Color space for RAW output (default: sRGB)",
)
# Add cropping parameters
parser.add_argument(
"-ct",
"--crop-top",
type=float,
default=0.0,
help="Percentage to crop from top (0.0-1.0)",
)
parser.add_argument(
"-cb",
"--crop-bottom",
type=float,
default=0.0,
help="Percentage to crop from bottom (0.0-1.0)",
)
parser.add_argument(
"-cl",
"--crop-left",
type=float,
default=0.0,
help="Percentage to crop from left (0.0-1.0)",
)
parser.add_argument(
"-cr",
"--crop-right",
type=float,
default=0.0,
help="Percentage to crop from right (0.0-1.0)",
)
# Detection parameters
parser.add_argument(
"-m",
"--method",
choices=["adaptive", "canny", "auto"],
default="adaptive",
help="Corner detection method",
)
parser.add_argument("--debug", action="store_true", help="Show debug information")
parser.add_argument(
"-p",
"--params",
nargs="*",
help="Override default parameters (e.g. --params blur_kernel_size=7 adaptive_C=3)",
)
# Add format argument
parser.add_argument(
"-f",
"--format",
choices=["tiff"],
default="tiff",
help="Output format (default: tiff)",
)
args = parser.parse_args()
# Parse custom parameters
custom_params = {}
if args.params:
for param in args.params:
key, value = param.split("=")
try:
custom_params[key] = ast.literal_eval(value)
except:
custom_params[key] = value
# Load image with all parameters
try:
image, color_order = load_image(
args.image_path,
gamma=args.gamma,
curve=args.curve,
use_auto_wb=args.use_auto_wb,
bright=args.bright,
output_color=args.output_color,
)
# Apply cropping
image = crop_image(
image,
crop_top=args.crop_top,
crop_bottom=args.crop_bottom,
crop_left=args.crop_left,
crop_right=args.crop_right,
)
except Exception as e:
print(f"Error loading/processing image: {e}")
return 1
# Detect corners
corners, debug_info = detect_document_corners(
image, color_order, method=args.method, params=custom_params
)
if corners is None:
print("No document corners detected")
return 1
# Apply warp
warped = warp_perspective_transform(image, corners)
if warped is None:
print("Warping failed")
return 1
# Convert if needed for saving
if color_order == "RGB":
# Convert RGB to BGR for consistent color handling
warped = cv2.cvtColor(warped, cv2.COLOR_RGB2BGR)
# Convert BGR to RGB for saving
warped = cv2.cvtColor(warped, cv2.COLOR_BGR2RGB)
# Save output
save_path = save_image(warped, args.image_path, format=args.format)
print(f"Saved image to: {save_path}")
return 0 # Return 0 for success
if __name__ == "__main__":
exit(main())
#!/bin/bash
uv run --isolated \
--with streamlit==1.42.0 \
--with kornia==0.7.0 \
--with torch==2.1.0 \
--with rawpy==0.21.0 \
--with opencv-python-headless==4.8.1.78 \
--with tifffile==2025.1.10 \
streamlit run \
--server.headless true \
--browser.gatherUsageStats false \
--browser.serverAddress 0.0.0.0 \
--server.port 8501 \
app.py
Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment