-
-
Save matklad/2626115 to your computer and use it in GitHub Desktop.
C# Suffix tree implementation based on Ukkonen's algorithm
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
using System; | |
using System.Collections.Generic; | |
using System.IO; | |
using System.Linq; | |
using System.Text; | |
namespace SuffixTreeAlgorithm | |
{ | |
public class SuffixTree | |
{ | |
public SuffixTree(string word) | |
{ | |
Word = word; | |
RootNode = new Node(this); | |
ActiveNode = RootNode; | |
//Message = TreeUpdate; | |
} | |
public char? CanonizationChar { get; set; } | |
public string Word { get; private set; } | |
private int CurrentSuffixStartIndex { get; set; } | |
private int CurrentSuffixEndIndex { get; set; } | |
private Node LastCreatedNodeInCurrentIteration { get; set; } | |
private int UnresolvedSuffixes { get; set; } | |
public Node RootNode { get; private set; } | |
private Node ActiveNode { get; set; } | |
private Edge ActiveEdge { get; set; } | |
private int DistanceIntoActiveEdge { get; set; } | |
private char LastCharacterOfCurrentSuffix { get; set; } | |
private int NextNodeNumber { get; set; } | |
private int NextEdgeNumber { get; set; } | |
public static void Main() | |
{ | |
Test(); | |
Console.ReadKey(); | |
} | |
public static void Test() | |
{ | |
const int testCount = 1000; | |
const int strLength = 20; | |
var r = new Random(); | |
for (int testNo = 0; testNo < testCount; testNo++) | |
{ | |
var sb = new StringBuilder(); | |
for (int i = 0; i < strLength; i++) | |
{ | |
char c = r.Next(2) == 0 ? 'a' : 'b'; | |
sb.Append(c); | |
} | |
String s = sb.ToString(); | |
int st = CountSubstringsWithSuffixTree(s); | |
int bf = CountSubstringsWithBruteForce(s); | |
if (st != bf) | |
{ | |
Console.WriteLine("Error"); | |
Console.WriteLine(s); | |
Console.WriteLine(st); | |
Console.WriteLine(bf); | |
break; | |
} | |
} | |
Console.WriteLine("Test ended"); | |
} | |
public static int CountSubstringsWithSuffixTree(string s) | |
{ | |
SuffixTree t = Create(s); | |
return CountEdgesLength(t.RootNode) - s.Length - 1; | |
} | |
private static int CountEdgesLength(Node node) | |
{ | |
int ans = 0; | |
foreach (Edge edge in node.Edges.Values) | |
{ | |
ans += edge.Length; | |
if (edge.Tail != null) | |
{ | |
ans += CountEdgesLength(edge.Tail); | |
} | |
} | |
return ans; | |
} | |
public static int CountSubstringsWithBruteForce(string s) | |
{ | |
var substrs = new HashSet<string>(); | |
for (int i = 0; i < s.Length; i++) | |
{ | |
for (int l = 1; l <= s.Length - i; l++) | |
{ | |
string subString = s.Substring(i, l); | |
substrs.Add(subString); | |
} | |
} | |
return substrs.Count(); | |
} | |
private static void TreeUpdate(string f, object[] args) | |
{ | |
Console.WriteLine(f, args); | |
} | |
public event Action<SuffixTree> Changed; | |
private void TriggerChanged() | |
{ | |
Action<SuffixTree> handler = Changed; | |
if (handler != null) | |
handler(this); | |
} | |
public event Action<string, object[]> Message; | |
private void SendMessage(string format, params object[] args) | |
{ | |
Action<string, object[]> handler = Message; | |
if (handler != null) | |
handler(format, args); | |
} | |
public static SuffixTree Create(string word, char canonizationChar = '$') | |
{ | |
var tree = new SuffixTree(word); | |
tree.Build(canonizationChar); | |
return tree; | |
} | |
public void Build(char canonizationChar) | |
{ | |
CanonizationChar = canonizationChar; | |
Word = string.Concat(Word, canonizationChar); | |
for (CurrentSuffixEndIndex = 0; CurrentSuffixEndIndex < Word.Length; CurrentSuffixEndIndex++) | |
{ | |
SendMessage("=== ITERATION {0} ===", CurrentSuffixEndIndex); | |
LastCreatedNodeInCurrentIteration = null; | |
LastCharacterOfCurrentSuffix = Word[CurrentSuffixEndIndex]; | |
for (CurrentSuffixStartIndex = CurrentSuffixEndIndex - UnresolvedSuffixes; | |
CurrentSuffixStartIndex <= CurrentSuffixEndIndex; | |
CurrentSuffixStartIndex++) | |
{ | |
bool wasImplicitlyAdded = !AddNextSuffix(); | |
SendMessage("\n{0}", RenderTree()); | |
if (wasImplicitlyAdded) | |
{ | |
UnresolvedSuffixes++; | |
break; | |
} | |
if (UnresolvedSuffixes > 0) | |
UnresolvedSuffixes--; | |
} | |
} | |
} | |
private bool AddNextSuffix() | |
{ | |
string suffix = | |
string.Concat(Word.Substring(CurrentSuffixStartIndex, CurrentSuffixEndIndex - CurrentSuffixStartIndex), | |
"{", Word[CurrentSuffixEndIndex], "}"); | |
SendMessage("The next suffix of '{0}' to add is '{1}' at indices {2},{3}", Word, suffix, | |
CurrentSuffixStartIndex, CurrentSuffixEndIndex); | |
SendMessage(" => ActiveNode: {0}", ActiveNode); | |
SendMessage(" => ActiveEdge: {0}", ActiveEdge == null ? "none" : ActiveEdge.ToString()); | |
SendMessage(" => DistanceIntoActiveEdge: {0}", DistanceIntoActiveEdge); | |
SendMessage(" => UnresolvedSuffixes: {0}", UnresolvedSuffixes); | |
if (ActiveEdge != null && DistanceIntoActiveEdge >= ActiveEdge.Length) | |
throw new Exception("BOUNDARY EXCEEDED"); | |
if (ActiveEdge != null) | |
return AddCurrentSuffixToActiveEdge(); | |
if (LastCreatedNodeInCurrentIteration != null) | |
{ | |
LastCreatedNodeInCurrentIteration.LinkedNode = ActiveNode; | |
SendMessage(" => Connected {0} to {1}", LastCreatedNodeInCurrentIteration, ActiveNode); | |
TriggerChanged(); | |
} | |
if (GetExistingEdgeAndSetAsActive()) | |
return false; | |
ActiveNode.AddNewEdge(); | |
TriggerChanged(); | |
UpdateActivePointAfterAddingNewEdge(); | |
return true; | |
} | |
private bool GetExistingEdgeAndSetAsActive() | |
{ | |
Edge edge; | |
if (ActiveNode.Edges.TryGetValue(LastCharacterOfCurrentSuffix, out edge)) | |
{ | |
SendMessage("Existing edge for {0} starting with '{1}' found. Values adjusted to:", ActiveNode, | |
LastCharacterOfCurrentSuffix); | |
ActiveEdge = edge; | |
DistanceIntoActiveEdge = 1; | |
TriggerChanged(); | |
NormalizeActivePointIfNowAtOrBeyondEdgeBoundary(ActiveEdge.StartIndex); | |
SendMessage(" => ActiveEdge is now: {0}", ActiveEdge); | |
SendMessage(" => DistanceIntoActiveEdge is now: {0}", DistanceIntoActiveEdge); | |
SendMessage(" => UnresolvedSuffixes is now: {0}", UnresolvedSuffixes); | |
return true; | |
} | |
SendMessage("Existing edge for {0} starting with '{1}' not found", ActiveNode, LastCharacterOfCurrentSuffix); | |
return false; | |
} | |
private bool AddCurrentSuffixToActiveEdge() | |
{ | |
char nextCharacterOnEdge = Word[ActiveEdge.StartIndex + DistanceIntoActiveEdge]; | |
if (nextCharacterOnEdge == LastCharacterOfCurrentSuffix) | |
{ | |
SendMessage("The next character on the current edge is '{0}' (suffix added implicitly)", | |
LastCharacterOfCurrentSuffix); | |
DistanceIntoActiveEdge++; | |
TriggerChanged(); | |
SendMessage(" => DistanceIntoActiveEdge is now: {0}", DistanceIntoActiveEdge); | |
NormalizeActivePointIfNowAtOrBeyondEdgeBoundary(ActiveEdge.StartIndex); | |
return false; | |
} | |
SplitActiveEdge(); | |
ActiveEdge.Tail.AddNewEdge(); | |
TriggerChanged(); | |
UpdateActivePointAfterAddingNewEdge(); | |
return true; | |
} | |
private void UpdateActivePointAfterAddingNewEdge() | |
{ | |
if (ReferenceEquals(ActiveNode, RootNode)) | |
{ | |
if (DistanceIntoActiveEdge > 0) | |
{ | |
SendMessage( | |
"New edge has been added and the active node is root. The active edge will now be updated."); | |
DistanceIntoActiveEdge--; | |
SendMessage(" => DistanceIntoActiveEdge decremented to: {0}", DistanceIntoActiveEdge); | |
ActiveEdge = DistanceIntoActiveEdge == 0 | |
? null | |
: ActiveNode.Edges[Word[CurrentSuffixStartIndex + 1]]; | |
SendMessage(" => ActiveEdge is now: {0}", ActiveEdge); | |
TriggerChanged(); | |
NormalizeActivePointIfNowAtOrBeyondEdgeBoundary(CurrentSuffixStartIndex + 1); | |
} | |
} | |
else | |
UpdateActivePointToLinkedNodeOrRoot(); | |
} | |
private void NormalizeActivePointIfNowAtOrBeyondEdgeBoundary(int firstIndexOfOriginalActiveEdge) | |
{ | |
int walkDistance = 0; | |
while (ActiveEdge != null && DistanceIntoActiveEdge >= ActiveEdge.Length) | |
{ | |
SendMessage( | |
"Active point is at or beyond edge boundary and will be moved until it falls inside an edge boundary"); | |
DistanceIntoActiveEdge -= ActiveEdge.Length; | |
ActiveNode = ActiveEdge.Tail ?? RootNode; | |
if (DistanceIntoActiveEdge == 0) | |
ActiveEdge = null; | |
else | |
{ | |
walkDistance += ActiveEdge.Length; | |
char c = Word[firstIndexOfOriginalActiveEdge + walkDistance]; | |
ActiveEdge = ActiveNode.Edges[c]; | |
} | |
TriggerChanged(); | |
} | |
} | |
private void SplitActiveEdge() | |
{ | |
ActiveEdge = ActiveEdge.SplitAtIndex(ActiveEdge.StartIndex + DistanceIntoActiveEdge); | |
SendMessage(" => ActiveEdge is now: {0}", ActiveEdge); | |
TriggerChanged(); | |
if (LastCreatedNodeInCurrentIteration != null) | |
{ | |
LastCreatedNodeInCurrentIteration.LinkedNode = ActiveEdge.Tail; | |
SendMessage(" => Connected {0} to {1}", LastCreatedNodeInCurrentIteration, ActiveEdge.Tail); | |
TriggerChanged(); | |
} | |
LastCreatedNodeInCurrentIteration = ActiveEdge.Tail; | |
LastCreatedNodeInCurrentIteration = ActiveEdge.Tail; | |
} | |
private void UpdateActivePointToLinkedNodeOrRoot() | |
{ | |
SendMessage("The linked node for active node {0} is {1}", ActiveNode, | |
ActiveNode.LinkedNode == null ? "[null]" : ActiveNode.LinkedNode.ToString()); | |
if (ActiveNode.LinkedNode != null) | |
{ | |
ActiveNode = ActiveNode.LinkedNode; | |
SendMessage(" => ActiveNode is now: {0}", ActiveNode); | |
} | |
else | |
{ | |
ActiveNode = RootNode; | |
SendMessage(" => ActiveNode is now ROOT", ActiveNode); | |
} | |
TriggerChanged(); | |
if (ActiveEdge != null) | |
{ | |
int firstIndexOfOriginalActiveEdge = ActiveEdge.StartIndex; | |
ActiveEdge = ActiveNode.Edges[Word[ActiveEdge.StartIndex]]; | |
TriggerChanged(); | |
NormalizeActivePointIfNowAtOrBeyondEdgeBoundary(firstIndexOfOriginalActiveEdge); | |
} | |
} | |
public string RenderTree() | |
{ | |
var writer = new StringWriter(); | |
RootNode.RenderTree(writer, ""); | |
return writer.ToString(); | |
} | |
public string WriteDotGraph() | |
{ | |
var sb = new StringBuilder(); | |
sb.AppendLine("digraph {"); | |
sb.AppendLine("rankdir = LR;"); | |
sb.AppendLine("edge [arrowsize=0.5,fontsize=11];"); | |
for (int i = 0; i < NextNodeNumber; i++) | |
sb.AppendFormat( | |
"node{0} [label=\"{0}\",style=filled,fillcolor={1},shape=circle,width=.1,height=.1,fontsize=11,margin=0.01];", | |
i, ActiveNode.NodeNumber == i ? "cyan" : "lightgrey").AppendLine(); | |
RootNode.WriteDotGraph(sb); | |
sb.AppendLine("}"); | |
return sb.ToString(); | |
} | |
public HashSet<string> ExtractAllSubstrings() | |
{ | |
var set = new HashSet<string>(); | |
ExtractAllSubstrings("", set, RootNode); | |
return set; | |
} | |
private void ExtractAllSubstrings(string str, HashSet<string> set, Node node) | |
{ | |
foreach (Edge edge in node.Edges.Values) | |
{ | |
string edgeStr = edge.StringWithoutCanonizationChar; | |
int edgeLength = !edge.EndIndex.HasValue && CanonizationChar.HasValue ? edge.Length - 1 : edge.Length; | |
// assume tailing canonization char | |
for (int length = 1; length <= edgeLength; length++) | |
set.Add(string.Concat(str, edgeStr.Substring(0, length))); | |
if (edge.Tail != null) | |
ExtractAllSubstrings(string.Concat(str, edge.StringWithoutCanonizationChar), set, edge.Tail); | |
} | |
} | |
public List<string> ExtractSubstringsForIndexing(int? maxLength = null) | |
{ | |
var list = new List<string>(); | |
ExtractSubstringsForIndexing("", list, maxLength ?? Word.Length, RootNode); | |
return list; | |
} | |
private void ExtractSubstringsForIndexing(string str, List<string> list, int len, Node node) | |
{ | |
foreach (Edge edge in node.Edges.Values) | |
{ | |
string newstr = string.Concat(str, Word.Substring(edge.StartIndex, Math.Min(len, edge.Length))); | |
if (len > edge.Length && edge.Tail != null) | |
ExtractSubstringsForIndexing(newstr, list, len - edge.Length, edge.Tail); | |
else | |
list.Add(newstr); | |
} | |
} | |
#region Nested type: Edge | |
public class Edge | |
{ | |
private readonly SuffixTree _tree; | |
public Edge(SuffixTree tree, Node head) | |
{ | |
_tree = tree; | |
Head = head; | |
StartIndex = tree.CurrentSuffixEndIndex; | |
EdgeNumber = _tree.NextEdgeNumber++; | |
} | |
public Node Head { get; private set; } | |
public Node Tail { get; private set; } | |
public int StartIndex { get; private set; } | |
public int? EndIndex { get; set; } | |
public int EdgeNumber { get; private set; } | |
public int Length | |
{ | |
get { return (EndIndex ?? _tree.Word.Length - 1) - StartIndex + 1; } | |
} | |
public string StringWithoutCanonizationChar | |
{ | |
get | |
{ | |
return _tree.Word.Substring(StartIndex, | |
(EndIndex ?? | |
_tree.CurrentSuffixEndIndex - (_tree.CanonizationChar.HasValue ? 1 : 0)) - | |
StartIndex + 1); | |
} | |
} | |
public string String | |
{ | |
get { return _tree.Word.Substring(StartIndex, (EndIndex ?? _tree.CurrentSuffixEndIndex) - StartIndex + 1); } | |
} | |
public Edge SplitAtIndex(int index) | |
{ | |
_tree.SendMessage("Splitting edge {0} at index {1} ('{2}')", this, index, _tree.Word[index]); | |
var newEdge = new Edge(_tree, Head); | |
var newNode = new Node(_tree); | |
newEdge.Tail = newNode; | |
newEdge.StartIndex = StartIndex; | |
newEdge.EndIndex = index - 1; | |
Head = newNode; | |
StartIndex = index; | |
newNode.Edges.Add(_tree.Word[StartIndex], this); | |
newEdge.Head.Edges[_tree.Word[newEdge.StartIndex]] = newEdge; | |
_tree.SendMessage(" => Hierarchy is now: {0} --> {1} --> {2} --> {3}", newEdge.Head, newEdge, newNode, | |
this); | |
return newEdge; | |
} | |
public override string ToString() | |
{ | |
return | |
string.Concat( | |
_tree.Word.Substring(StartIndex, (EndIndex ?? _tree.CurrentSuffixEndIndex) - StartIndex + 1), | |
"(", | |
StartIndex, ",", EndIndex.HasValue ? EndIndex.ToString() : "#", ")"); | |
} | |
public void RenderTree(TextWriter writer, string prefix, int maxEdgeLength) | |
{ | |
string strEdge = _tree.Word.Substring(StartIndex, | |
(EndIndex ?? _tree.CurrentSuffixEndIndex) - StartIndex + 1); | |
writer.Write(strEdge); | |
if (Tail == null) | |
writer.WriteLine(); | |
else | |
{ | |
var line = new string(RenderChars.HorizontalLine, maxEdgeLength - strEdge.Length + 1); | |
writer.Write(line); | |
Tail.RenderTree(writer, string.Concat(prefix, new string(' ', strEdge.Length + line.Length))); | |
} | |
} | |
public void WriteDotGraph(StringBuilder sb) | |
{ | |
if (Tail == null) | |
sb.AppendFormat("leaf{0} [label=\"\",shape=point]", EdgeNumber).AppendLine(); | |
string label, weight, color; | |
if (_tree.ActiveEdge != null && ReferenceEquals(this, _tree.ActiveEdge)) | |
{ | |
if (_tree.ActiveEdge.Length == 0) | |
label = ""; | |
else if (_tree.DistanceIntoActiveEdge > Length) | |
label = "<<FONT COLOR=\"red\" SIZE=\"11\"><B>" + String + "</B> (" + | |
_tree.DistanceIntoActiveEdge + ")</FONT>>"; | |
else if (_tree.DistanceIntoActiveEdge == Length) | |
label = "<<FONT COLOR=\"red\" SIZE=\"11\">" + String + "</FONT>>"; | |
else if (_tree.DistanceIntoActiveEdge > 0) | |
label = | |
"<<TABLE BORDER=\"0\" CELLPADDING=\"0\" CELLSPACING=\"0\"><TR><TD><FONT COLOR=\"blue\"><B>" + | |
String.Substring(0, _tree.DistanceIntoActiveEdge) + "</B></FONT></TD><TD COLOR=\"black\">" + | |
String.Substring(_tree.DistanceIntoActiveEdge) + "</TD></TR></TABLE>>"; | |
else | |
label = "\"" + String + "\""; | |
color = "blue"; | |
weight = "5"; | |
} | |
else | |
{ | |
label = "\"" + String + "\""; | |
color = "black"; | |
weight = "3"; | |
} | |
string tail = Tail == null ? "leaf" + EdgeNumber : "node" + Tail.NodeNumber; | |
sb.AppendFormat("node{0} -> {1} [label={2},weight={3},color={4},size=11]", Head.NodeNumber, tail, label, | |
weight, color).AppendLine(); | |
if (Tail != null) | |
Tail.WriteDotGraph(sb); | |
} | |
} | |
#endregion | |
#region Nested type: Node | |
public class Node | |
{ | |
private readonly SuffixTree _tree; | |
public Node(SuffixTree tree) | |
{ | |
_tree = tree; | |
Edges = new Dictionary<char, Edge>(); | |
NodeNumber = _tree.NextNodeNumber++; | |
} | |
public Dictionary<char, Edge> Edges { get; private set; } | |
public Node LinkedNode { get; set; } | |
public int NodeNumber { get; private set; } | |
public void AddNewEdge() | |
{ | |
_tree.SendMessage("Adding new edge to {0}", this); | |
var edge = new Edge(_tree, this); | |
Edges.Add(_tree.Word[_tree.CurrentSuffixEndIndex], edge); | |
_tree.SendMessage(" => {0} --> {1}", this, edge); | |
} | |
public void RenderTree(TextWriter writer, string prefix) | |
{ | |
string strNode = string.Concat("(", | |
NodeNumber.ToString(new string('0', | |
_tree.NextNodeNumber.ToString().Length)), | |
")"); | |
writer.Write(strNode); | |
Edge[] edges = Edges.Select(kvp => kvp.Value).OrderBy(e => _tree.Word[e.StartIndex]).ToArray(); | |
if (edges.Any()) | |
{ | |
string prefixWithNodePadding = prefix + new string(' ', strNode.Length); | |
int maxEdgeLength = edges.Max(e => (e.EndIndex ?? _tree.CurrentSuffixEndIndex) - e.StartIndex + 1); | |
for (int i = 0; i < edges.Length; i++) | |
{ | |
char connector, extender = ' '; | |
if (i == 0) | |
{ | |
if (edges.Length > 1) | |
{ | |
connector = RenderChars.TJunctionDown; | |
extender = RenderChars.VerticalLine; | |
} | |
else | |
connector = RenderChars.HorizontalLine; | |
} | |
else | |
{ | |
writer.Write(prefixWithNodePadding); | |
if (i == edges.Length - 1) | |
connector = RenderChars.CornerRight; | |
else | |
{ | |
connector = RenderChars.TJunctionRight; | |
extender = RenderChars.VerticalLine; | |
} | |
} | |
writer.Write(string.Concat(connector, RenderChars.HorizontalLine)); | |
string newPrefix = string.Concat(prefixWithNodePadding, extender, ' '); | |
edges[i].RenderTree(writer, newPrefix, maxEdgeLength); | |
} | |
} | |
} | |
public override string ToString() | |
{ | |
return string.Concat("node #", NodeNumber); | |
} | |
public void WriteDotGraph(StringBuilder sb) | |
{ | |
if (LinkedNode != null) | |
sb.AppendFormat("node{0} -> node{1} [label=\"\",weight=.01,style=dotted]", NodeNumber, | |
LinkedNode.NodeNumber).AppendLine(); | |
foreach (Edge edge in Edges.Values) | |
edge.WriteDotGraph(sb); | |
} | |
} | |
#endregion | |
#region Nested type: RenderChars | |
public static class RenderChars | |
{ | |
public const char TJunctionDown = '┬'; | |
public const char HorizontalLine = '─'; | |
public const char VerticalLine = '│'; | |
public const char TJunctionRight = '├'; | |
public const char CornerRight = '└'; | |
} | |
#endregion | |
} | |
} |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
static void Main() | |
{ | |
SuffixTree.Create("abcabxabcd"); | |
SuffixTree.Create("abcdefabxybcdmnabcdex"); | |
SuffixTree.Create("abcadak"); | |
SuffixTree.Create("dedododeeodo"); | |
SuffixTree.Create("ooooooooo"); | |
SuffixTree.Create("mississippi"); | |
} |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
=== ITERATION 0 === | |
The next suffix of 'abcabxabcd' to add is '{a}' at indices 0,0 | |
=> ActiveNode: node #0 | |
=> ActiveEdge: none | |
=> DistanceIntoActiveEdge: 0 | |
=> UnresolvedSuffixes: 0 | |
Existing edge for node #0 starting with 'a' not found | |
Adding new edge to node #0 | |
=> node #0 --> a(0,#) | |
(0)──a | |
=== ITERATION 1 === | |
The next suffix of 'abcabxabcd' to add is '{b}' at indices 1,1 | |
=> ActiveNode: node #0 | |
=> ActiveEdge: none | |
=> DistanceIntoActiveEdge: 0 | |
=> UnresolvedSuffixes: 0 | |
Existing edge for node #0 starting with 'b' not found | |
Adding new edge to node #0 | |
=> node #0 --> b(1,#) | |
(0)┬─ab | |
└─b | |
=== ITERATION 2 === | |
The next suffix of 'abcabxabcd' to add is '{c}' at indices 2,2 | |
=> ActiveNode: node #0 | |
=> ActiveEdge: none | |
=> DistanceIntoActiveEdge: 0 | |
=> UnresolvedSuffixes: 0 | |
Existing edge for node #0 starting with 'c' not found | |
Adding new edge to node #0 | |
=> node #0 --> c(2,#) | |
(0)┬─abc | |
├─bc | |
└─c | |
=== ITERATION 3 === | |
The next suffix of 'abcabxabcd' to add is '{a}' at indices 3,3 | |
=> ActiveNode: node #0 | |
=> ActiveEdge: none | |
=> DistanceIntoActiveEdge: 0 | |
=> UnresolvedSuffixes: 0 | |
Existing edge for node #0 starting with 'a' found. Values adjusted to: | |
=> ActiveEdge is now: abca(0,#) | |
=> DistanceIntoActiveEdge is now: 1 | |
=> UnresolvedSuffixes is now: 0 | |
(0)┬─abca | |
├─bca | |
└─ca | |
=== ITERATION 4 === | |
The next suffix of 'abcabxabcd' to add is 'a{b}' at indices 3,4 | |
=> ActiveNode: node #0 | |
=> ActiveEdge: abcab(0,#) | |
=> DistanceIntoActiveEdge: 1 | |
=> UnresolvedSuffixes: 1 | |
The next character on the current edge is 'b' (suffix added implicitly) | |
=> DistanceIntoActiveEdge is now: 2 | |
(0)┬─abcab | |
├─bcab | |
└─cab | |
=== ITERATION 5 === | |
The next suffix of 'abcabxabcd' to add is 'ab{x}' at indices 3,5 | |
=> ActiveNode: node #0 | |
=> ActiveEdge: abcabx(0,#) | |
=> DistanceIntoActiveEdge: 2 | |
=> UnresolvedSuffixes: 2 | |
Splitting edge abcabx(0,#) at index 2 ('c') | |
=> Hierarchy is now: node #0 --> ab(0,1) --> node #1 --> cabx(2,#) | |
=> ActiveEdge is now: ab(0,1) | |
Adding new edge to node #1 | |
=> node #1 --> x(5,#) | |
(0)┬─ab────(1)┬─cabx | |
│ └─x | |
├─bcabx | |
└─cabx | |
The next suffix of 'abcabxabcd' to add is 'b{x}' at indices 4,5 | |
=> ActiveNode: node #0 | |
=> ActiveEdge: bcabx(1,#) | |
=> DistanceIntoActiveEdge: 1 | |
=> UnresolvedSuffixes: 1 | |
Splitting edge bcabx(1,#) at index 2 ('c') | |
=> Hierarchy is now: node #0 --> b(1,1) --> node #2 --> cabx(2,#) | |
=> ActiveEdge is now: b(1,1) | |
=> Connected node #1 to node #2 | |
Adding new edge to node #2 | |
=> node #2 --> x(5,#) | |
(0)┬─ab───(1)┬─cabx | |
│ └─x | |
├─b────(2)┬─cabx | |
│ └─x | |
└─cabx | |
The next suffix of 'abcabxabcd' to add is '{x}' at indices 5,5 | |
=> ActiveNode: node #0 | |
=> ActiveEdge: none | |
=> DistanceIntoActiveEdge: 0 | |
=> UnresolvedSuffixes: 0 | |
Existing edge for node #0 starting with 'x' not found | |
Adding new edge to node #0 | |
=> node #0 --> x(5,#) | |
(0)┬─ab───(1)┬─cabx | |
│ └─x | |
├─b────(2)┬─cabx | |
│ └─x | |
├─cabx | |
└─x | |
=== ITERATION 6 === | |
The next suffix of 'abcabxabcd' to add is '{a}' at indices 6,6 | |
=> ActiveNode: node #0 | |
=> ActiveEdge: none | |
=> DistanceIntoActiveEdge: 0 | |
=> UnresolvedSuffixes: 0 | |
Existing edge for node #0 starting with 'a' found. Values adjusted to: | |
=> ActiveEdge is now: ab(0,1) | |
=> DistanceIntoActiveEdge is now: 1 | |
=> UnresolvedSuffixes is now: 0 | |
(0)┬─ab────(1)┬─cabxa | |
│ └─xa | |
├─b─────(2)┬─cabxa | |
│ └─xa | |
├─cabxa | |
└─xa | |
=== ITERATION 7 === | |
The next suffix of 'abcabxabcd' to add is 'a{b}' at indices 6,7 | |
=> ActiveNode: node #0 | |
=> ActiveEdge: ab(0,1) | |
=> DistanceIntoActiveEdge: 1 | |
=> UnresolvedSuffixes: 1 | |
The next character on the current edge is 'b' (suffix added implicitly) | |
=> DistanceIntoActiveEdge is now: 2 | |
Active point is now at or beyond edge boundary and will be moved until it falls inside an edge boundary | |
(0)┬─ab─────(1)┬─cabxab | |
│ └─xab | |
├─b──────(2)┬─cabxab | |
│ └─xab | |
├─cabxab | |
└─xab | |
=== ITERATION 8 === | |
The next suffix of 'abcabxabcd' to add is 'ab{c}' at indices 6,8 | |
=> ActiveNode: node #1 | |
=> ActiveEdge: none | |
=> DistanceIntoActiveEdge: 0 | |
=> UnresolvedSuffixes: 2 | |
Existing edge for node #1 starting with 'c' found. Values adjusted to: | |
=> ActiveEdge is now: cabxabc(2,#) | |
=> DistanceIntoActiveEdge is now: 1 | |
=> UnresolvedSuffixes is now: 2 | |
(0)┬─ab──────(1)┬─cabxabc | |
│ └─xabc | |
├─b───────(2)┬─cabxabc | |
│ └─xabc | |
├─cabxabc | |
└─xabc | |
=== ITERATION 9 === | |
The next suffix of 'abcabxabcd' to add is 'abc{d}' at indices 6,9 | |
=> ActiveNode: node #1 | |
=> ActiveEdge: cabxabcd(2,#) | |
=> DistanceIntoActiveEdge: 1 | |
=> UnresolvedSuffixes: 3 | |
Splitting edge cabxabcd(2,#) at index 3 ('a') | |
=> Hierarchy is now: node #1 --> c(2,2) --> node #3 --> abxabcd(3,#) | |
=> ActiveEdge is now: c(2,2) | |
Adding new edge to node #3 | |
=> node #3 --> d(9,#) | |
The linked node for active node node #1 is node #2 | |
=> ActiveNode is now: node #2 | |
(0)┬─ab───────(1)┬─c─────(3)┬─abxabcd | |
│ │ └─d | |
│ └─xabcd | |
├─b────────(2)┬─cabxabcd | |
│ └─xabcd | |
├─cabxabcd | |
└─xabcd | |
The next suffix of 'abcabxabcd' to add is 'bc{d}' at indices 7,9 | |
=> ActiveNode: node #2 | |
=> ActiveEdge: cabxabcd(2,#) | |
=> DistanceIntoActiveEdge: 1 | |
=> UnresolvedSuffixes: 2 | |
Splitting edge cabxabcd(2,#) at index 3 ('a') | |
=> Hierarchy is now: node #2 --> c(2,2) --> node #4 --> abxabcd(3,#) | |
=> ActiveEdge is now: c(2,2) | |
=> Connected node #3 to node #4 | |
Adding new edge to node #4 | |
=> node #4 --> d(9,#) | |
The linked node for active node node #2 is [null] | |
(0)┬─ab───────(1)┬─c─────(3)┬─abxabcd | |
│ │ └─d | |
│ └─xabcd | |
├─b────────(2)┬─c─────(4)┬─abxabcd | |
│ │ └─d | |
│ └─xabcd | |
├─cabxabcd | |
└─xabcd | |
The next suffix of 'abcabxabcd' to add is 'c{d}' at indices 8,9 | |
=> ActiveNode: node #0 | |
=> ActiveEdge: cabxabcd(2,#) | |
=> DistanceIntoActiveEdge: 1 | |
=> UnresolvedSuffixes: 1 | |
Splitting edge cabxabcd(2,#) at index 3 ('a') | |
=> Hierarchy is now: node #0 --> c(2,2) --> node #5 --> abxabcd(3,#) | |
=> ActiveEdge is now: c(2,2) | |
=> Connected node #4 to node #5 | |
Adding new edge to node #5 | |
=> node #5 --> d(9,#) | |
(0)┬─ab────(1)┬─c─────(3)┬─abxabcd | |
│ │ └─d | |
│ └─xabcd | |
├─b─────(2)┬─c─────(4)┬─abxabcd | |
│ │ └─d | |
│ └─xabcd | |
├─c─────(5)┬─abxabcd | |
│ └─d | |
└─xabcd | |
The next suffix of 'abcabxabcd' to add is '{d}' at indices 9,9 | |
=> ActiveNode: node #0 | |
=> ActiveEdge: none | |
=> DistanceIntoActiveEdge: 0 | |
=> UnresolvedSuffixes: 0 | |
Existing edge for node #0 starting with 'd' not found | |
Adding new edge to node #0 | |
=> node #0 --> d(9,#) | |
(0)┬─ab────(1)┬─c─────(3)┬─abxabcd | |
│ │ └─d | |
│ └─xabcd | |
├─b─────(2)┬─c─────(4)┬─abxabcd | |
│ │ └─d | |
│ └─xabcd | |
├─c─────(5)┬─abxabcd | |
│ └─d | |
├─d | |
└─xabcd |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
=== ITERATION 0 === | |
The next suffix of 'abcdefabxybcdmnabcdex' to add is '{a}' at indices 0,0 | |
=> ActiveNode: node #0 | |
=> ActiveEdge: none | |
=> DistanceIntoActiveEdge: 0 | |
=> UnresolvedSuffixes: 0 | |
Existing edge for node #0 starting with 'a' not found | |
Adding new edge to node #0 | |
=> node #0 --> a(0,#) | |
(0)──a | |
=== ITERATION 1 === | |
The next suffix of 'abcdefabxybcdmnabcdex' to add is '{b}' at indices 1,1 | |
=> ActiveNode: node #0 | |
=> ActiveEdge: none | |
=> DistanceIntoActiveEdge: 0 | |
=> UnresolvedSuffixes: 0 | |
Existing edge for node #0 starting with 'b' not found | |
Adding new edge to node #0 | |
=> node #0 --> b(1,#) | |
(0)┬─ab | |
└─b | |
=== ITERATION 2 === | |
The next suffix of 'abcdefabxybcdmnabcdex' to add is '{c}' at indices 2,2 | |
=> ActiveNode: node #0 | |
=> ActiveEdge: none | |
=> DistanceIntoActiveEdge: 0 | |
=> UnresolvedSuffixes: 0 | |
Existing edge for node #0 starting with 'c' not found | |
Adding new edge to node #0 | |
=> node #0 --> c(2,#) | |
(0)┬─abc | |
├─bc | |
└─c | |
=== ITERATION 3 === | |
The next suffix of 'abcdefabxybcdmnabcdex' to add is '{d}' at indices 3,3 | |
=> ActiveNode: node #0 | |
=> ActiveEdge: none | |
=> DistanceIntoActiveEdge: 0 | |
=> UnresolvedSuffixes: 0 | |
Existing edge for node #0 starting with 'd' not found | |
Adding new edge to node #0 | |
=> node #0 --> d(3,#) | |
(0)┬─abcd | |
├─bcd | |
├─cd | |
└─d | |
=== ITERATION 4 === | |
The next suffix of 'abcdefabxybcdmnabcdex' to add is '{e}' at indices 4,4 | |
=> ActiveNode: node #0 | |
=> ActiveEdge: none | |
=> DistanceIntoActiveEdge: 0 | |
=> UnresolvedSuffixes: 0 | |
Existing edge for node #0 starting with 'e' not found | |
Adding new edge to node #0 | |
=> node #0 --> e(4,#) | |
(0)┬─abcde | |
├─bcde | |
├─cde | |
├─de | |
└─e | |
=== ITERATION 5 === | |
The next suffix of 'abcdefabxybcdmnabcdex' to add is '{f}' at indices 5,5 | |
=> ActiveNode: node #0 | |
=> ActiveEdge: none | |
=> DistanceIntoActiveEdge: 0 | |
=> UnresolvedSuffixes: 0 | |
Existing edge for node #0 starting with 'f' not found | |
Adding new edge to node #0 | |
=> node #0 --> f(5,#) | |
(0)┬─abcdef | |
├─bcdef | |
├─cdef | |
├─def | |
├─ef | |
└─f | |
=== ITERATION 6 === | |
The next suffix of 'abcdefabxybcdmnabcdex' to add is '{a}' at indices 6,6 | |
=> ActiveNode: node #0 | |
=> ActiveEdge: none | |
=> DistanceIntoActiveEdge: 0 | |
=> UnresolvedSuffixes: 0 | |
Existing edge for node #0 starting with 'a' found. Values adjusted to: | |
=> ActiveEdge is now: abcdefa(0,#) | |
=> DistanceIntoActiveEdge is now: 1 | |
=> UnresolvedSuffixes is now: 0 | |
(0)┬─abcdefa | |
├─bcdefa | |
├─cdefa | |
├─defa | |
├─efa | |
└─fa | |
=== ITERATION 7 === | |
The next suffix of 'abcdefabxybcdmnabcdex' to add is 'a{b}' at indices 6,7 | |
=> ActiveNode: node #0 | |
=> ActiveEdge: abcdefab(0,#) | |
=> DistanceIntoActiveEdge: 1 | |
=> UnresolvedSuffixes: 1 | |
The next character on the current edge is 'b' (suffix added implicitly) | |
=> DistanceIntoActiveEdge is now: 2 | |
(0)┬─abcdefab | |
├─bcdefab | |
├─cdefab | |
├─defab | |
├─efab | |
└─fab | |
=== ITERATION 8 === | |
The next suffix of 'abcdefabxybcdmnabcdex' to add is 'ab{x}' at indices 6,8 | |
=> ActiveNode: node #0 | |
=> ActiveEdge: abcdefabx(0,#) | |
=> DistanceIntoActiveEdge: 2 | |
=> UnresolvedSuffixes: 2 | |
Splitting edge abcdefabx(0,#) at index 2 ('c') | |
=> Hierarchy is now: node #0 --> ab(0,1) --> node #1 --> cdefabx(2,#) | |
=> ActiveEdge is now: ab(0,1) | |
Adding new edge to node #1 | |
=> node #1 --> x(8,#) | |
(0)┬─ab───────(1)┬─cdefabx | |
│ └─x | |
├─bcdefabx | |
├─cdefabx | |
├─defabx | |
├─efabx | |
└─fabx | |
The next suffix of 'abcdefabxybcdmnabcdex' to add is 'b{x}' at indices 7,8 | |
=> ActiveNode: node #0 | |
=> ActiveEdge: bcdefabx(1,#) | |
=> DistanceIntoActiveEdge: 1 | |
=> UnresolvedSuffixes: 1 | |
Splitting edge bcdefabx(1,#) at index 2 ('c') | |
=> Hierarchy is now: node #0 --> b(1,1) --> node #2 --> cdefabx(2,#) | |
=> ActiveEdge is now: b(1,1) | |
=> Connected node #1 to node #2 | |
Adding new edge to node #2 | |
=> node #2 --> x(8,#) | |
(0)┬─ab──────(1)┬─cdefabx | |
│ └─x | |
├─b───────(2)┬─cdefabx | |
│ └─x | |
├─cdefabx | |
├─defabx | |
├─efabx | |
└─fabx | |
The next suffix of 'abcdefabxybcdmnabcdex' to add is '{x}' at indices 8,8 | |
=> ActiveNode: node #0 | |
=> ActiveEdge: none | |
=> DistanceIntoActiveEdge: 0 | |
=> UnresolvedSuffixes: 0 | |
Existing edge for node #0 starting with 'x' not found | |
Adding new edge to node #0 | |
=> node #0 --> x(8,#) | |
(0)┬─ab──────(1)┬─cdefabx | |
│ └─x | |
├─b───────(2)┬─cdefabx | |
│ └─x | |
├─cdefabx | |
├─defabx | |
├─efabx | |
├─fabx | |
└─x | |
=== ITERATION 9 === | |
The next suffix of 'abcdefabxybcdmnabcdex' to add is '{y}' at indices 9,9 | |
=> ActiveNode: node #0 | |
=> ActiveEdge: none | |
=> DistanceIntoActiveEdge: 0 | |
=> UnresolvedSuffixes: 0 | |
Existing edge for node #0 starting with 'y' not found | |
Adding new edge to node #0 | |
=> node #0 --> y(9,#) | |
(0)┬─ab───────(1)┬─cdefabxy | |
│ └─xy | |
├─b────────(2)┬─cdefabxy | |
│ └─xy | |
├─cdefabxy | |
├─defabxy | |
├─efabxy | |
├─fabxy | |
├─xy | |
└─y | |
=== ITERATION 10 === | |
The next suffix of 'abcdefabxybcdmnabcdex' to add is '{b}' at indices 10,10 | |
=> ActiveNode: node #0 | |
=> ActiveEdge: none | |
=> DistanceIntoActiveEdge: 0 | |
=> UnresolvedSuffixes: 0 | |
Existing edge for node #0 starting with 'b' found. Values adjusted to: | |
Active point is now at or beyond edge boundary and will be moved until it falls inside an edge boundary | |
=> ActiveEdge is now: | |
=> DistanceIntoActiveEdge is now: 0 | |
=> UnresolvedSuffixes is now: 0 | |
(0)┬─ab────────(1)┬─cdefabxyb | |
│ └─xyb | |
├─b─────────(2)┬─cdefabxyb | |
│ └─xyb | |
├─cdefabxyb | |
├─defabxyb | |
├─efabxyb | |
├─fabxyb | |
├─xyb | |
└─yb | |
=== ITERATION 11 === | |
The next suffix of 'abcdefabxybcdmnabcdex' to add is 'b{c}' at indices 10,11 | |
=> ActiveNode: node #2 | |
=> ActiveEdge: none | |
=> DistanceIntoActiveEdge: 0 | |
=> UnresolvedSuffixes: 1 | |
Existing edge for node #2 starting with 'c' found. Values adjusted to: | |
=> ActiveEdge is now: cdefabxybc(2,#) | |
=> DistanceIntoActiveEdge is now: 1 | |
=> UnresolvedSuffixes is now: 1 | |
(0)┬─ab─────────(1)┬─cdefabxybc | |
│ └─xybc | |
├─b──────────(2)┬─cdefabxybc | |
│ └─xybc | |
├─cdefabxybc | |
├─defabxybc | |
├─efabxybc | |
├─fabxybc | |
├─xybc | |
└─ybc | |
=== ITERATION 12 === | |
The next suffix of 'abcdefabxybcdmnabcdex' to add is 'bc{d}' at indices 10,12 | |
=> ActiveNode: node #2 | |
=> ActiveEdge: cdefabxybcd(2,#) | |
=> DistanceIntoActiveEdge: 1 | |
=> UnresolvedSuffixes: 2 | |
The next character on the current edge is 'd' (suffix added implicitly) | |
=> DistanceIntoActiveEdge is now: 2 | |
(0)┬─ab──────────(1)┬─cdefabxybcd | |
│ └─xybcd | |
├─b───────────(2)┬─cdefabxybcd | |
│ └─xybcd | |
├─cdefabxybcd | |
├─defabxybcd | |
├─efabxybcd | |
├─fabxybcd | |
├─xybcd | |
└─ybcd | |
=== ITERATION 13 === | |
The next suffix of 'abcdefabxybcdmnabcdex' to add is 'bcd{m}' at indices 10,13 | |
=> ActiveNode: node #2 | |
=> ActiveEdge: cdefabxybcdm(2,#) | |
=> DistanceIntoActiveEdge: 2 | |
=> UnresolvedSuffixes: 3 | |
Splitting edge cdefabxybcdm(2,#) at index 4 ('e') | |
=> Hierarchy is now: node #2 --> cd(2,3) --> node #3 --> efabxybcdm(4,#) | |
=> ActiveEdge is now: cd(2,3) | |
Adding new edge to node #3 | |
=> node #3 --> m(13,#) | |
The linked node for active node node #2 is [null] | |
(0)┬─ab───────────(1)┬─cdefabxybcdm | |
│ └─xybcdm | |
├─b────────────(2)┬─cd─────(3)┬─efabxybcdm | |
│ │ └─m | |
│ └─xybcdm | |
├─cdefabxybcdm | |
├─defabxybcdm | |
├─efabxybcdm | |
├─fabxybcdm | |
├─xybcdm | |
└─ybcdm | |
The next suffix of 'abcdefabxybcdmnabcdex' to add is 'cd{m}' at indices 11,13 | |
=> ActiveNode: node #0 | |
=> ActiveEdge: cdefabxybcdm(2,#) | |
=> DistanceIntoActiveEdge: 2 | |
=> UnresolvedSuffixes: 2 | |
Splitting edge cdefabxybcdm(2,#) at index 4 ('e') | |
=> Hierarchy is now: node #0 --> cd(2,3) --> node #4 --> efabxybcdm(4,#) | |
=> ActiveEdge is now: cd(2,3) | |
=> Connected node #3 to node #4 | |
Adding new edge to node #4 | |
=> node #4 --> m(13,#) | |
(0)┬─ab──────────(1)┬─cdefabxybcdm | |
│ └─xybcdm | |
├─b───────────(2)┬─cd─────(3)┬─efabxybcdm | |
│ │ └─m | |
│ └─xybcdm | |
├─cd──────────(4)┬─efabxybcdm | |
│ └─m | |
├─defabxybcdm | |
├─efabxybcdm | |
├─fabxybcdm | |
├─xybcdm | |
└─ybcdm | |
The next suffix of 'abcdefabxybcdmnabcdex' to add is 'd{m}' at indices 12,13 | |
=> ActiveNode: node #0 | |
=> ActiveEdge: defabxybcdm(3,#) | |
=> DistanceIntoActiveEdge: 1 | |
=> UnresolvedSuffixes: 1 | |
Splitting edge defabxybcdm(3,#) at index 4 ('e') | |
=> Hierarchy is now: node #0 --> d(3,3) --> node #5 --> efabxybcdm(4,#) | |
=> ActiveEdge is now: d(3,3) | |
=> Connected node #4 to node #5 | |
Adding new edge to node #5 | |
=> node #5 --> m(13,#) | |
(0)┬─ab─────────(1)┬─cdefabxybcdm | |
│ └─xybcdm | |
├─b──────────(2)┬─cd─────(3)┬─efabxybcdm | |
│ │ └─m | |
│ └─xybcdm | |
├─cd─────────(4)┬─efabxybcdm | |
│ └─m | |
├─d──────────(5)┬─efabxybcdm | |
│ └─m | |
├─efabxybcdm | |
├─fabxybcdm | |
├─xybcdm | |
└─ybcdm | |
The next suffix of 'abcdefabxybcdmnabcdex' to add is '{m}' at indices 13,13 | |
=> ActiveNode: node #0 | |
=> ActiveEdge: none | |
=> DistanceIntoActiveEdge: 0 | |
=> UnresolvedSuffixes: 0 | |
Existing edge for node #0 starting with 'm' not found | |
Adding new edge to node #0 | |
=> node #0 --> m(13,#) | |
(0)┬─ab─────────(1)┬─cdefabxybcdm | |
│ └─xybcdm | |
├─b──────────(2)┬─cd─────(3)┬─efabxybcdm | |
│ │ └─m | |
│ └─xybcdm | |
├─cd─────────(4)┬─efabxybcdm | |
│ └─m | |
├─d──────────(5)┬─efabxybcdm | |
│ └─m | |
├─efabxybcdm | |
├─fabxybcdm | |
├─m | |
├─xybcdm | |
└─ybcdm | |
=== ITERATION 14 === | |
The next suffix of 'abcdefabxybcdmnabcdex' to add is '{n}' at indices 14,14 | |
=> ActiveNode: node #0 | |
=> ActiveEdge: none | |
=> DistanceIntoActiveEdge: 0 | |
=> UnresolvedSuffixes: 0 | |
Existing edge for node #0 starting with 'n' not found | |
Adding new edge to node #0 | |
=> node #0 --> n(14,#) | |
(0)┬─ab──────────(1)┬─cdefabxybcdmn | |
│ └─xybcdmn | |
├─b───────────(2)┬─cd──────(3)┬─efabxybcdmn | |
│ │ └─mn | |
│ └─xybcdmn | |
├─cd──────────(4)┬─efabxybcdmn | |
│ └─mn | |
├─d───────────(5)┬─efabxybcdmn | |
│ └─mn | |
├─efabxybcdmn | |
├─fabxybcdmn | |
├─mn | |
├─n | |
├─xybcdmn | |
└─ybcdmn | |
=== ITERATION 15 === | |
The next suffix of 'abcdefabxybcdmnabcdex' to add is '{a}' at indices 15,15 | |
=> ActiveNode: node #0 | |
=> ActiveEdge: none | |
=> DistanceIntoActiveEdge: 0 | |
=> UnresolvedSuffixes: 0 | |
Existing edge for node #0 starting with 'a' found. Values adjusted to: | |
=> ActiveEdge is now: ab(0,1) | |
=> DistanceIntoActiveEdge is now: 1 | |
=> UnresolvedSuffixes is now: 0 | |
(0)┬─ab───────────(1)┬─cdefabxybcdmna | |
│ └─xybcdmna | |
├─b────────────(2)┬─cd───────(3)┬─efabxybcdmna | |
│ │ └─mna | |
│ └─xybcdmna | |
├─cd───────────(4)┬─efabxybcdmna | |
│ └─mna | |
├─d────────────(5)┬─efabxybcdmna | |
│ └─mna | |
├─efabxybcdmna | |
├─fabxybcdmna | |
├─mna | |
├─na | |
├─xybcdmna | |
└─ybcdmna | |
=== ITERATION 16 === | |
The next suffix of 'abcdefabxybcdmnabcdex' to add is 'a{b}' at indices 15,16 | |
=> ActiveNode: node #0 | |
=> ActiveEdge: ab(0,1) | |
=> DistanceIntoActiveEdge: 1 | |
=> UnresolvedSuffixes: 1 | |
The next character on the current edge is 'b' (suffix added implicitly) | |
=> DistanceIntoActiveEdge is now: 2 | |
Active point is now at or beyond edge boundary and will be moved until it falls inside an edge boundary | |
(0)┬─ab────────────(1)┬─cdefabxybcdmnab | |
│ └─xybcdmnab | |
├─b─────────────(2)┬─cd────────(3)┬─efabxybcdmnab | |
│ │ └─mnab | |
│ └─xybcdmnab | |
├─cd────────────(4)┬─efabxybcdmnab | |
│ └─mnab | |
├─d─────────────(5)┬─efabxybcdmnab | |
│ └─mnab | |
├─efabxybcdmnab | |
├─fabxybcdmnab | |
├─mnab | |
├─nab | |
├─xybcdmnab | |
└─ybcdmnab | |
=== ITERATION 17 === | |
The next suffix of 'abcdefabxybcdmnabcdex' to add is 'ab{c}' at indices 15,17 | |
=> ActiveNode: node #1 | |
=> ActiveEdge: none | |
=> DistanceIntoActiveEdge: 0 | |
=> UnresolvedSuffixes: 2 | |
Existing edge for node #1 starting with 'c' found. Values adjusted to: | |
=> ActiveEdge is now: cdefabxybcdmnabc(2,#) | |
=> DistanceIntoActiveEdge is now: 1 | |
=> UnresolvedSuffixes is now: 2 | |
(0)┬─ab─────────────(1)┬─cdefabxybcdmnabc | |
│ └─xybcdmnabc | |
├─b──────────────(2)┬─cd─────────(3)┬─efabxybcdmnabc | |
│ │ └─mnabc | |
│ └─xybcdmnabc | |
├─cd─────────────(4)┬─efabxybcdmnabc | |
│ └─mnabc | |
├─d──────────────(5)┬─efabxybcdmnabc | |
│ └─mnabc | |
├─efabxybcdmnabc | |
├─fabxybcdmnabc | |
├─mnabc | |
├─nabc | |
├─xybcdmnabc | |
└─ybcdmnabc | |
=== ITERATION 18 === | |
The next suffix of 'abcdefabxybcdmnabcdex' to add is 'abc{d}' at indices 15,18 | |
=> ActiveNode: node #1 | |
=> ActiveEdge: cdefabxybcdmnabcd(2,#) | |
=> DistanceIntoActiveEdge: 1 | |
=> UnresolvedSuffixes: 3 | |
The next character on the current edge is 'd' (suffix added implicitly) | |
=> DistanceIntoActiveEdge is now: 2 | |
(0)┬─ab──────────────(1)┬─cdefabxybcdmnabcd | |
│ └─xybcdmnabcd | |
├─b───────────────(2)┬─cd──────────(3)┬─efabxybcdmnabcd | |
│ │ └─mnabcd | |
│ └─xybcdmnabcd | |
├─cd──────────────(4)┬─efabxybcdmnabcd | |
│ └─mnabcd | |
├─d───────────────(5)┬─efabxybcdmnabcd | |
│ └─mnabcd | |
├─efabxybcdmnabcd | |
├─fabxybcdmnabcd | |
├─mnabcd | |
├─nabcd | |
├─xybcdmnabcd | |
└─ybcdmnabcd | |
=== ITERATION 19 === | |
The next suffix of 'abcdefabxybcdmnabcdex' to add is 'abcd{e}' at indices 15,19 | |
=> ActiveNode: node #1 | |
=> ActiveEdge: cdefabxybcdmnabcde(2,#) | |
=> DistanceIntoActiveEdge: 2 | |
=> UnresolvedSuffixes: 4 | |
The next character on the current edge is 'e' (suffix added implicitly) | |
=> DistanceIntoActiveEdge is now: 3 | |
(0)┬─ab───────────────(1)┬─cdefabxybcdmnabcde | |
│ └─xybcdmnabcde | |
├─b────────────────(2)┬─cd───────────(3)┬─efabxybcdmnabcde | |
│ │ └─mnabcde | |
│ └─xybcdmnabcde | |
├─cd───────────────(4)┬─efabxybcdmnabcde | |
│ └─mnabcde | |
├─d────────────────(5)┬─efabxybcdmnabcde | |
│ └─mnabcde | |
├─efabxybcdmnabcde | |
├─fabxybcdmnabcde | |
├─mnabcde | |
├─nabcde | |
├─xybcdmnabcde | |
└─ybcdmnabcde | |
=== ITERATION 20 === | |
The next suffix of 'abcdefabxybcdmnabcdex' to add is 'abcde{x}' at indices 15,20 | |
=> ActiveNode: node #1 | |
=> ActiveEdge: cdefabxybcdmnabcdex(2,#) | |
=> DistanceIntoActiveEdge: 3 | |
=> UnresolvedSuffixes: 5 | |
Splitting edge cdefabxybcdmnabcdex(2,#) at index 5 ('f') | |
=> Hierarchy is now: node #1 --> cde(2,4) --> node #6 --> fabxybcdmnabcdex(5,#) | |
=> ActiveEdge is now: cde(2,4) | |
Adding new edge to node #6 | |
=> node #6 --> x(20,#) | |
The linked node for active node node #1 is node #2 | |
=> ActiveNode is now: node #2 | |
Active point is now at or beyond edge boundary and will be moved until it falls inside an edge boundary | |
(0)┬─ab────────────────(1)┬─cde───────────(6)┬─fabxybcdmnabcdex | |
│ │ └─x | |
│ └─xybcdmnabcdex | |
├─b─────────────────(2)┬─cd────────────(3)┬─efabxybcdmnabcdex | |
│ │ └─mnabcdex | |
│ └─xybcdmnabcdex | |
├─cd────────────────(4)┬─efabxybcdmnabcdex | |
│ └─mnabcdex | |
├─d─────────────────(5)┬─efabxybcdmnabcdex | |
│ └─mnabcdex | |
├─efabxybcdmnabcdex | |
├─fabxybcdmnabcdex | |
├─mnabcdex | |
├─nabcdex | |
├─xybcdmnabcdex | |
└─ybcdmnabcdex | |
The next suffix of 'abcdefabxybcdmnabcdex' to add is 'bcde{x}' at indices 16,20 | |
=> ActiveNode: node #3 | |
=> ActiveEdge: efabxybcdmnabcdex(4,#) | |
=> DistanceIntoActiveEdge: 1 | |
=> UnresolvedSuffixes: 4 | |
Splitting edge efabxybcdmnabcdex(4,#) at index 5 ('f') | |
=> Hierarchy is now: node #3 --> e(4,4) --> node #7 --> fabxybcdmnabcdex(5,#) | |
=> ActiveEdge is now: e(4,4) | |
=> Connected node #6 to node #7 | |
Adding new edge to node #7 | |
=> node #7 --> x(20,#) | |
The linked node for active node node #3 is node #4 | |
=> ActiveNode is now: node #4 | |
(0)┬─ab────────────────(1)┬─cde───────────(6)┬─fabxybcdmnabcdex | |
│ │ └─x | |
│ └─xybcdmnabcdex | |
├─b─────────────────(2)┬─cd────────────(3)┬─e────────(7)┬─fabxybcdmnabcdex | |
│ │ │ └─x | |
│ │ └─mnabcdex | |
│ └─xybcdmnabcdex | |
├─cd────────────────(4)┬─efabxybcdmnabcdex | |
│ └─mnabcdex | |
├─d─────────────────(5)┬─efabxybcdmnabcdex | |
│ └─mnabcdex | |
├─efabxybcdmnabcdex | |
├─fabxybcdmnabcdex | |
├─mnabcdex | |
├─nabcdex | |
├─xybcdmnabcdex | |
└─ybcdmnabcdex | |
The next suffix of 'abcdefabxybcdmnabcdex' to add is 'cde{x}' at indices 17,20 | |
=> ActiveNode: node #4 | |
=> ActiveEdge: efabxybcdmnabcdex(4,#) | |
=> DistanceIntoActiveEdge: 1 | |
=> UnresolvedSuffixes: 3 | |
Splitting edge efabxybcdmnabcdex(4,#) at index 5 ('f') | |
=> Hierarchy is now: node #4 --> e(4,4) --> node #8 --> fabxybcdmnabcdex(5,#) | |
=> ActiveEdge is now: e(4,4) | |
=> Connected node #7 to node #8 | |
Adding new edge to node #8 | |
=> node #8 --> x(20,#) | |
The linked node for active node node #4 is node #5 | |
=> ActiveNode is now: node #5 | |
(0)┬─ab────────────────(1)┬─cde───────────(6)┬─fabxybcdmnabcdex | |
│ │ └─x | |
│ └─xybcdmnabcdex | |
├─b─────────────────(2)┬─cd────────────(3)┬─e────────(7)┬─fabxybcdmnabcdex | |
│ │ │ └─x | |
│ │ └─mnabcdex | |
│ └─xybcdmnabcdex | |
├─cd────────────────(4)┬─e────────(8)┬─fabxybcdmnabcdex | |
│ │ └─x | |
│ └─mnabcdex | |
├─d─────────────────(5)┬─efabxybcdmnabcdex | |
│ └─mnabcdex | |
├─efabxybcdmnabcdex | |
├─fabxybcdmnabcdex | |
├─mnabcdex | |
├─nabcdex | |
├─xybcdmnabcdex | |
└─ybcdmnabcdex | |
The next suffix of 'abcdefabxybcdmnabcdex' to add is 'de{x}' at indices 18,20 | |
=> ActiveNode: node #5 | |
=> ActiveEdge: efabxybcdmnabcdex(4,#) | |
=> DistanceIntoActiveEdge: 1 | |
=> UnresolvedSuffixes: 2 | |
Splitting edge efabxybcdmnabcdex(4,#) at index 5 ('f') | |
=> Hierarchy is now: node #5 --> e(4,4) --> node #9 --> fabxybcdmnabcdex(5,#) | |
=> ActiveEdge is now: e(4,4) | |
=> Connected node #8 to node #9 | |
Adding new edge to node #9 | |
=> node #9 --> x(20,#) | |
The linked node for active node node #5 is [null] | |
(00)┬─ab────────────────(01)┬─cde───────────(06)┬─fabxybcdmnabcdex | |
│ │ └─x | |
│ └─xybcdmnabcdex | |
├─b─────────────────(02)┬─cd────────────(03)┬─e────────(07)┬─fabxybcdmnabcdex | |
│ │ │ └─x | |
│ │ └─mnabcdex | |
│ └─xybcdmnabcdex | |
├─cd────────────────(04)┬─e────────(08)┬─fabxybcdmnabcdex | |
│ │ └─x | |
│ └─mnabcdex | |
├─d─────────────────(05)┬─e────────(09)┬─fabxybcdmnabcdex | |
│ │ └─x | |
│ └─mnabcdex | |
├─efabxybcdmnabcdex | |
├─fabxybcdmnabcdex | |
├─mnabcdex | |
├─nabcdex | |
├─xybcdmnabcdex | |
└─ybcdmnabcdex | |
The next suffix of 'abcdefabxybcdmnabcdex' to add is 'e{x}' at indices 19,20 | |
=> ActiveNode: node #0 | |
=> ActiveEdge: efabxybcdmnabcdex(4,#) | |
=> DistanceIntoActiveEdge: 1 | |
=> UnresolvedSuffixes: 1 | |
Splitting edge efabxybcdmnabcdex(4,#) at index 5 ('f') | |
=> Hierarchy is now: node #0 --> e(4,4) --> node #10 --> fabxybcdmnabcdex(5,#) | |
=> ActiveEdge is now: e(4,4) | |
=> Connected node #9 to node #10 | |
Adding new edge to node #10 | |
=> node #10 --> x(20,#) | |
(00)┬─ab───────────────(01)┬─cde───────────(06)┬─fabxybcdmnabcdex | |
│ │ └─x | |
│ └─xybcdmnabcdex | |
├─b────────────────(02)┬─cd────────────(03)┬─e────────(07)┬─fabxybcdmnabcdex | |
│ │ │ └─x | |
│ │ └─mnabcdex | |
│ └─xybcdmnabcdex | |
├─cd───────────────(04)┬─e────────(08)┬─fabxybcdmnabcdex | |
│ │ └─x | |
│ └─mnabcdex | |
├─d────────────────(05)┬─e────────(09)┬─fabxybcdmnabcdex | |
│ │ └─x | |
│ └─mnabcdex | |
├─e────────────────(10)┬─fabxybcdmnabcdex | |
│ └─x | |
├─fabxybcdmnabcdex | |
├─mnabcdex | |
├─nabcdex | |
├─xybcdmnabcdex | |
└─ybcdmnabcdex | |
The next suffix of 'abcdefabxybcdmnabcdex' to add is '{x}' at indices 20,20 | |
=> ActiveNode: node #0 | |
=> ActiveEdge: none | |
=> DistanceIntoActiveEdge: 0 | |
=> UnresolvedSuffixes: 0 | |
Existing edge for node #0 starting with 'x' found. Values adjusted to: | |
=> ActiveEdge is now: xybcdmnabcdex(8,#) | |
=> DistanceIntoActiveEdge is now: 1 | |
=> UnresolvedSuffixes is now: 0 | |
(00)┬─ab───────────────(01)┬─cde───────────(06)┬─fabxybcdmnabcdex | |
│ │ └─x | |
│ └─xybcdmnabcdex | |
├─b────────────────(02)┬─cd────────────(03)┬─e────────(07)┬─fabxybcdmnabcdex | |
│ │ │ └─x | |
│ │ └─mnabcdex | |
│ └─xybcdmnabcdex | |
├─cd───────────────(04)┬─e────────(08)┬─fabxybcdmnabcdex | |
│ │ └─x | |
│ └─mnabcdex | |
├─d────────────────(05)┬─e────────(09)┬─fabxybcdmnabcdex | |
│ │ └─x | |
│ └─mnabcdex | |
├─e────────────────(10)┬─fabxybcdmnabcdex | |
│ └─x | |
├─fabxybcdmnabcdex | |
├─mnabcdex | |
├─nabcdex | |
├─xybcdmnabcdex | |
└─ybcdmnabcdex |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
=== ITERATION 0 === | |
The next suffix of 'abcadak' to add is '{a}' at indices 0,0 | |
=> ActiveNode: node #0 | |
=> ActiveEdge: none | |
=> DistanceIntoActiveEdge: 0 | |
=> UnresolvedSuffixes: 0 | |
Existing edge for node #0 starting with 'a' not found | |
Adding new edge to node #0 | |
=> node #0 --> a(0,#) | |
(0)──a | |
=== ITERATION 1 === | |
The next suffix of 'abcadak' to add is '{b}' at indices 1,1 | |
=> ActiveNode: node #0 | |
=> ActiveEdge: none | |
=> DistanceIntoActiveEdge: 0 | |
=> UnresolvedSuffixes: 0 | |
Existing edge for node #0 starting with 'b' not found | |
Adding new edge to node #0 | |
=> node #0 --> b(1,#) | |
(0)┬─ab | |
└─b | |
=== ITERATION 2 === | |
The next suffix of 'abcadak' to add is '{c}' at indices 2,2 | |
=> ActiveNode: node #0 | |
=> ActiveEdge: none | |
=> DistanceIntoActiveEdge: 0 | |
=> UnresolvedSuffixes: 0 | |
Existing edge for node #0 starting with 'c' not found | |
Adding new edge to node #0 | |
=> node #0 --> c(2,#) | |
(0)┬─abc | |
├─bc | |
└─c | |
=== ITERATION 3 === | |
The next suffix of 'abcadak' to add is '{a}' at indices 3,3 | |
=> ActiveNode: node #0 | |
=> ActiveEdge: none | |
=> DistanceIntoActiveEdge: 0 | |
=> UnresolvedSuffixes: 0 | |
Existing edge for node #0 starting with 'a' found. Values adjusted to: | |
=> ActiveEdge is now: abca(0,#) | |
=> DistanceIntoActiveEdge is now: 1 | |
=> UnresolvedSuffixes is now: 0 | |
(0)┬─abca | |
├─bca | |
└─ca | |
=== ITERATION 4 === | |
The next suffix of 'abcadak' to add is 'a{d}' at indices 3,4 | |
=> ActiveNode: node #0 | |
=> ActiveEdge: abcad(0,#) | |
=> DistanceIntoActiveEdge: 1 | |
=> UnresolvedSuffixes: 1 | |
Splitting edge abcad(0,#) at index 1 ('b') | |
=> Hierarchy is now: node #0 --> a(0,0) --> node #1 --> bcad(1,#) | |
=> ActiveEdge is now: a(0,0) | |
Adding new edge to node #1 | |
=> node #1 --> d(4,#) | |
(0)┬─a────(1)┬─bcad | |
│ └─d | |
├─bcad | |
└─cad | |
The next suffix of 'abcadak' to add is '{d}' at indices 4,4 | |
=> ActiveNode: node #0 | |
=> ActiveEdge: none | |
=> DistanceIntoActiveEdge: 0 | |
=> UnresolvedSuffixes: 0 | |
Existing edge for node #0 starting with 'd' not found | |
Adding new edge to node #0 | |
=> node #0 --> d(4,#) | |
(0)┬─a────(1)┬─bcad | |
│ └─d | |
├─bcad | |
├─cad | |
└─d | |
=== ITERATION 5 === | |
The next suffix of 'abcadak' to add is '{a}' at indices 5,5 | |
=> ActiveNode: node #0 | |
=> ActiveEdge: none | |
=> DistanceIntoActiveEdge: 0 | |
=> UnresolvedSuffixes: 0 | |
Existing edge for node #0 starting with 'a' found. Values adjusted to: | |
Active point is now at or beyond edge boundary and will be moved until it falls inside an edge boundary | |
=> ActiveEdge is now: | |
=> DistanceIntoActiveEdge is now: 0 | |
=> UnresolvedSuffixes is now: 0 | |
(0)┬─a─────(1)┬─bcada | |
│ └─da | |
├─bcada | |
├─cada | |
└─da | |
=== ITERATION 6 === | |
The next suffix of 'abcadak' to add is 'a{k}' at indices 5,6 | |
=> ActiveNode: node #1 | |
=> ActiveEdge: none | |
=> DistanceIntoActiveEdge: 0 | |
=> UnresolvedSuffixes: 1 | |
Existing edge for node #1 starting with 'k' not found | |
Adding new edge to node #1 | |
=> node #1 --> k(6,#) | |
The linked node for active node node #1 is [null] | |
(0)┬─a──────(1)┬─bcadak | |
│ ├─dak | |
│ └─k | |
├─bcadak | |
├─cadak | |
└─dak | |
The next suffix of 'abcadak' to add is '{k}' at indices 6,6 | |
=> ActiveNode: node #0 | |
=> ActiveEdge: none | |
=> DistanceIntoActiveEdge: 0 | |
=> UnresolvedSuffixes: 0 | |
Existing edge for node #0 starting with 'k' not found | |
Adding new edge to node #0 | |
=> node #0 --> k(6,#) | |
(0)┬─a──────(1)┬─bcadak | |
│ ├─dak | |
│ └─k | |
├─bcadak | |
├─cadak | |
├─dak | |
└─k |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
=== ITERATION 0 === | |
The next suffix of 'dedododeeodo$' to add is '{d}' at indices 0,0 | |
=> ActiveNode: node #0 | |
=> ActiveEdge: none | |
=> DistanceIntoActiveEdge: 0 | |
=> UnresolvedSuffixes: 0 | |
Existing edge for node #0 starting with 'd' not found | |
Adding new edge to node #0 | |
=> node #0 --> d(0,#) | |
(0)──d | |
=== ITERATION 1 === | |
The next suffix of 'dedododeeodo$' to add is '{e}' at indices 1,1 | |
=> ActiveNode: node #0 | |
=> ActiveEdge: none | |
=> DistanceIntoActiveEdge: 0 | |
=> UnresolvedSuffixes: 0 | |
Existing edge for node #0 starting with 'e' not found | |
Adding new edge to node #0 | |
=> node #0 --> e(1,#) | |
(0)┬─de | |
└─e | |
=== ITERATION 2 === | |
The next suffix of 'dedododeeodo$' to add is '{d}' at indices 2,2 | |
=> ActiveNode: node #0 | |
=> ActiveEdge: none | |
=> DistanceIntoActiveEdge: 0 | |
=> UnresolvedSuffixes: 0 | |
Existing edge for node #0 starting with 'd' found. Values adjusted to: | |
=> ActiveEdge is now: ded(0,#) | |
=> DistanceIntoActiveEdge is now: 1 | |
=> UnresolvedSuffixes is now: 0 | |
(0)┬─ded | |
└─ed | |
=== ITERATION 3 === | |
The next suffix of 'dedododeeodo$' to add is 'd{o}' at indices 2,3 | |
=> ActiveNode: node #0 | |
=> ActiveEdge: dedo(0,#) | |
=> DistanceIntoActiveEdge: 1 | |
=> UnresolvedSuffixes: 1 | |
Splitting edge dedo(0,#) at index 1 ('e') | |
=> Hierarchy is now: node #0 --> d(0,0) --> node #1 --> edo(1,#) | |
=> ActiveEdge is now: d(0,0) | |
Adding new edge to node #1 | |
=> node #1 --> o(3,#) | |
(0)┬─d───(1)┬─edo | |
│ └─o | |
└─edo | |
The next suffix of 'dedododeeodo$' to add is '{o}' at indices 3,3 | |
=> ActiveNode: node #0 | |
=> ActiveEdge: none | |
=> DistanceIntoActiveEdge: 0 | |
=> UnresolvedSuffixes: 0 | |
Existing edge for node #0 starting with 'o' not found | |
Adding new edge to node #0 | |
=> node #0 --> o(3,#) | |
(0)┬─d───(1)┬─edo | |
│ └─o | |
├─edo | |
└─o | |
=== ITERATION 4 === | |
The next suffix of 'dedododeeodo$' to add is '{d}' at indices 4,4 | |
=> ActiveNode: node #0 | |
=> ActiveEdge: none | |
=> DistanceIntoActiveEdge: 0 | |
=> UnresolvedSuffixes: 0 | |
Existing edge for node #0 starting with 'd' found. Values adjusted to: | |
Active point is now at or beyond edge boundary and will be moved until it falls inside an edge boundary | |
=> ActiveEdge is now: | |
=> DistanceIntoActiveEdge is now: 0 | |
=> UnresolvedSuffixes is now: 0 | |
(0)┬─d────(1)┬─edod | |
│ └─od | |
├─edod | |
└─od | |
=== ITERATION 5 === | |
The next suffix of 'dedododeeodo$' to add is 'd{o}' at indices 4,5 | |
=> ActiveNode: node #1 | |
=> ActiveEdge: none | |
=> DistanceIntoActiveEdge: 0 | |
=> UnresolvedSuffixes: 1 | |
Existing edge for node #1 starting with 'o' found. Values adjusted to: | |
=> ActiveEdge is now: odo(3,#) | |
=> DistanceIntoActiveEdge is now: 1 | |
=> UnresolvedSuffixes is now: 1 | |
(0)┬─d─────(1)┬─edodo | |
│ └─odo | |
├─edodo | |
└─odo | |
=== ITERATION 6 === | |
The next suffix of 'dedododeeodo$' to add is 'do{d}' at indices 4,6 | |
=> ActiveNode: node #1 | |
=> ActiveEdge: odod(3,#) | |
=> DistanceIntoActiveEdge: 1 | |
=> UnresolvedSuffixes: 2 | |
The next character on the current edge is 'd' (suffix added implicitly) | |
=> DistanceIntoActiveEdge is now: 2 | |
(0)┬─d──────(1)┬─edodod | |
│ └─odod | |
├─edodod | |
└─odod | |
=== ITERATION 7 === | |
The next suffix of 'dedododeeodo$' to add is 'dod{e}' at indices 4,7 | |
=> ActiveNode: node #1 | |
=> ActiveEdge: odode(3,#) | |
=> DistanceIntoActiveEdge: 2 | |
=> UnresolvedSuffixes: 3 | |
Splitting edge odode(3,#) at index 5 ('o') | |
=> Hierarchy is now: node #1 --> od(3,4) --> node #2 --> ode(5,#) | |
=> ActiveEdge is now: od(3,4) | |
Adding new edge to node #2 | |
=> node #2 --> e(7,#) | |
The linked node for active node node #1 is [null] | |
(0)┬─d───────(1)┬─edodode | |
│ └─od──────(2)┬─e | |
│ └─ode | |
├─edodode | |
└─odode | |
The next suffix of 'dedododeeodo$' to add is 'od{e}' at indices 5,7 | |
=> ActiveNode: node #0 | |
=> ActiveEdge: odode(3,#) | |
=> DistanceIntoActiveEdge: 2 | |
=> UnresolvedSuffixes: 2 | |
Splitting edge odode(3,#) at index 5 ('o') | |
=> Hierarchy is now: node #0 --> od(3,4) --> node #3 --> ode(5,#) | |
=> ActiveEdge is now: od(3,4) | |
=> Connected node #2 to node #3 | |
Adding new edge to node #3 | |
=> node #3 --> e(7,#) | |
Active point is now at or beyond edge boundary and will be moved until it falls inside an edge boundary | |
(0)┬─d───────(1)┬─edodode | |
│ └─od──────(2)┬─e | |
│ └─ode | |
├─edodode | |
└─od──────(3)┬─e | |
└─ode | |
The next suffix of 'dedododeeodo$' to add is 'd{e}' at indices 6,7 | |
=> ActiveNode: node #1 | |
=> ActiveEdge: none | |
=> DistanceIntoActiveEdge: 0 | |
=> UnresolvedSuffixes: 1 | |
Existing edge for node #1 starting with 'e' found. Values adjusted to: | |
=> ActiveEdge is now: edodode(1,#) | |
=> DistanceIntoActiveEdge is now: 1 | |
=> UnresolvedSuffixes is now: 1 | |
(0)┬─d───────(1)┬─edodode | |
│ └─od──────(2)┬─e | |
│ └─ode | |
├─edodode | |
└─od──────(3)┬─e | |
└─ode | |
=== ITERATION 8 === | |
The next suffix of 'dedododeeodo$' to add is 'de{e}' at indices 6,8 | |
=> ActiveNode: node #1 | |
=> ActiveEdge: edododee(1,#) | |
=> DistanceIntoActiveEdge: 1 | |
=> UnresolvedSuffixes: 2 | |
Splitting edge edododee(1,#) at index 2 ('d') | |
=> Hierarchy is now: node #1 --> e(1,1) --> node #4 --> dododee(2,#) | |
=> ActiveEdge is now: e(1,1) | |
Adding new edge to node #4 | |
=> node #4 --> e(8,#) | |
The linked node for active node node #1 is [null] | |
(0)┬─d────────(1)┬─e──(4)┬─dododee | |
│ │ └─e | |
│ └─od─(2)┬─ee | |
│ └─odee | |
├─edododee | |
└─od───────(3)┬─ee | |
└─odee | |
The next suffix of 'dedododeeodo$' to add is 'e{e}' at indices 7,8 | |
=> ActiveNode: node #0 | |
=> ActiveEdge: edododee(1,#) | |
=> DistanceIntoActiveEdge: 1 | |
=> UnresolvedSuffixes: 1 | |
Splitting edge edododee(1,#) at index 2 ('d') | |
=> Hierarchy is now: node #0 --> e(1,1) --> node #5 --> dododee(2,#) | |
=> ActiveEdge is now: e(1,1) | |
=> Connected node #4 to node #5 | |
Adding new edge to node #5 | |
=> node #5 --> e(8,#) | |
(0)┬─d──(1)┬─e──(4)┬─dododee | |
│ │ └─e | |
│ └─od─(2)┬─ee | |
│ └─odee | |
├─e──(5)┬─dododee | |
│ └─e | |
└─od─(3)┬─ee | |
└─odee | |
The next suffix of 'dedododeeodo$' to add is '{e}' at indices 8,8 | |
=> ActiveNode: node #0 | |
=> ActiveEdge: none | |
=> DistanceIntoActiveEdge: 0 | |
=> UnresolvedSuffixes: 0 | |
Existing edge for node #0 starting with 'e' found. Values adjusted to: | |
Active point is now at or beyond edge boundary and will be moved until it falls inside an edge boundary | |
=> ActiveEdge is now: | |
=> DistanceIntoActiveEdge is now: 0 | |
=> UnresolvedSuffixes is now: 0 | |
(0)┬─d──(1)┬─e──(4)┬─dododee | |
│ │ └─e | |
│ └─od─(2)┬─ee | |
│ └─odee | |
├─e──(5)┬─dododee | |
│ └─e | |
└─od─(3)┬─ee | |
└─odee | |
=== ITERATION 9 === | |
The next suffix of 'dedododeeodo$' to add is 'e{o}' at indices 8,9 | |
=> ActiveNode: node #5 | |
=> ActiveEdge: none | |
=> DistanceIntoActiveEdge: 0 | |
=> UnresolvedSuffixes: 1 | |
Existing edge for node #5 starting with 'o' not found | |
Adding new edge to node #5 | |
=> node #5 --> o(9,#) | |
The linked node for active node node #5 is [null] | |
(0)┬─d──(1)┬─e──(4)┬─dododeeo | |
│ │ └─eo | |
│ └─od─(2)┬─eeo | |
│ └─odeeo | |
├─e──(5)┬─dododeeo | |
│ ├─eo | |
│ └─o | |
└─od─(3)┬─eeo | |
└─odeeo | |
The next suffix of 'dedododeeodo$' to add is '{o}' at indices 9,9 | |
=> ActiveNode: node #0 | |
=> ActiveEdge: none | |
=> DistanceIntoActiveEdge: 0 | |
=> UnresolvedSuffixes: 0 | |
Existing edge for node #0 starting with 'o' found. Values adjusted to: | |
=> ActiveEdge is now: od(3,4) | |
=> DistanceIntoActiveEdge is now: 1 | |
=> UnresolvedSuffixes is now: 0 | |
(0)┬─d──(1)┬─e──(4)┬─dododeeo | |
│ │ └─eo | |
│ └─od─(2)┬─eeo | |
│ └─odeeo | |
├─e──(5)┬─dododeeo | |
│ ├─eo | |
│ └─o | |
└─od─(3)┬─eeo | |
└─odeeo | |
=== ITERATION 10 === | |
The next suffix of 'dedododeeodo$' to add is 'o{d}' at indices 9,10 | |
=> ActiveNode: node #0 | |
=> ActiveEdge: od(3,4) | |
=> DistanceIntoActiveEdge: 1 | |
=> UnresolvedSuffixes: 1 | |
The next character on the current edge is 'd' (suffix added implicitly) | |
=> DistanceIntoActiveEdge is now: 2 | |
Active point is now at or beyond edge boundary and will be moved until it falls inside an edge boundary | |
(0)┬─d──(1)┬─e──(4)┬─dododeeod | |
│ │ └─eod | |
│ └─od─(2)┬─eeod | |
│ └─odeeod | |
├─e──(5)┬─dododeeod | |
│ ├─eod | |
│ └─od | |
└─od─(3)┬─eeod | |
└─odeeod | |
=== ITERATION 11 === | |
The next suffix of 'dedododeeodo$' to add is 'od{o}' at indices 9,11 | |
=> ActiveNode: node #3 | |
=> ActiveEdge: none | |
=> DistanceIntoActiveEdge: 0 | |
=> UnresolvedSuffixes: 2 | |
Existing edge for node #3 starting with 'o' found. Values adjusted to: | |
=> ActiveEdge is now: odeeodo(5,#) | |
=> DistanceIntoActiveEdge is now: 1 | |
=> UnresolvedSuffixes is now: 2 | |
(0)┬─d──(1)┬─e──(4)┬─dododeeodo | |
│ │ └─eodo | |
│ └─od─(2)┬─eeodo | |
│ └─odeeodo | |
├─e──(5)┬─dododeeodo | |
│ ├─eodo | |
│ └─odo | |
└─od─(3)┬─eeodo | |
└─odeeodo | |
=== ITERATION 12 === | |
The next suffix of 'dedododeeodo$' to add is 'odo{$}' at indices 9,12 | |
=> ActiveNode: node #3 | |
=> ActiveEdge: odeeodo$(5,#) | |
=> DistanceIntoActiveEdge: 1 | |
=> UnresolvedSuffixes: 3 | |
Splitting edge odeeodo$(5,#) at index 6 ('d') | |
=> Hierarchy is now: node #3 --> o(5,5) --> node #6 --> deeodo$(6,#) | |
=> ActiveEdge is now: o(5,5) | |
Adding new edge to node #6 | |
=> node #6 --> $(12,#) | |
The linked node for active node node #3 is [null] | |
(0)┬─d──(1)┬─e──(4)┬─dododeeodo$ | |
│ │ └─eodo$ | |
│ └─od─(2)┬─eeodo$ | |
│ └─odeeodo$ | |
├─e──(5)┬─dododeeodo$ | |
│ ├─eodo$ | |
│ └─odo$ | |
└─od─(3)┬─eeodo$ | |
└─o──────(6)┬─$ | |
└─deeodo$ | |
The next suffix of 'dedododeeodo$' to add is 'do{$}' at indices 10,12 | |
=> ActiveNode: node #0 | |
=> ActiveEdge: od(3,4) | |
=> DistanceIntoActiveEdge: 1 | |
=> UnresolvedSuffixes: 2 | |
Splitting edge od(3,4) at index 4 ('d') | |
=> Hierarchy is now: node #0 --> o(3,3) --> node #7 --> d(4,4) | |
=> ActiveEdge is now: o(3,3) | |
=> Connected node #6 to node #7 | |
Adding new edge to node #7 | |
=> node #7 --> $(12,#) | |
(0)┬─d─(1)┬─e──(4)┬─dododeeodo$ | |
│ │ └─eodo$ | |
│ └─od─(2)┬─eeodo$ | |
│ └─odeeodo$ | |
├─e─(5)┬─dododeeodo$ | |
│ ├─eodo$ | |
│ └─odo$ | |
└─o─(7)┬─$ | |
└─d─(3)┬─eeodo$ | |
└─o──────(6)┬─$ | |
└─deeodo$ | |
The next suffix of 'dedododeeodo$' to add is 'o{$}' at indices 11,12 | |
=> ActiveNode: node #0 | |
=> ActiveEdge: none | |
=> DistanceIntoActiveEdge: 0 | |
=> UnresolvedSuffixes: 1 | |
Existing edge for node #0 starting with '$' not found | |
Adding new edge to node #0 | |
=> node #0 --> $(12,#) | |
(0)┬─$ | |
├─d─(1)┬─e──(4)┬─dododeeodo$ | |
│ │ └─eodo$ | |
│ └─od─(2)┬─eeodo$ | |
│ └─odeeodo$ | |
├─e─(5)┬─dododeeodo$ | |
│ ├─eodo$ | |
│ └─odo$ | |
└─o─(7)┬─$ | |
└─d─(3)┬─eeodo$ | |
└─o──────(6)┬─$ | |
└─deeodo$ | |
The next suffix of 'dedododeeodo$' to add is '{$}' at indices 12,12 | |
=> ActiveNode: node #0 | |
=> ActiveEdge: none | |
=> DistanceIntoActiveEdge: 0 | |
=> UnresolvedSuffixes: 0 | |
Existing edge for node #0 starting with '$' found. Values adjusted to: | |
Active point is now at or beyond edge boundary and will be moved until it falls inside an edge boundary | |
=> ActiveEdge is now: | |
=> DistanceIntoActiveEdge is now: 0 | |
=> UnresolvedSuffixes is now: 0 | |
(0)┬─$ | |
├─d─(1)┬─e──(4)┬─dododeeodo$ | |
│ │ └─eodo$ | |
│ └─od─(2)┬─eeodo$ | |
│ └─odeeodo$ | |
├─e─(5)┬─dododeeodo$ | |
│ ├─eodo$ | |
│ └─odo$ | |
└─o─(7)┬─$ | |
└─d─(3)┬─eeodo$ | |
└─o──────(6)┬─$ | |
└─deeodo$ |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
=== ITERATION 0 === | |
The next suffix of 'ooooooooo$' to add is '{o}' at indices 0,0 | |
=> ActiveNode: node #0 | |
=> ActiveEdge: none | |
=> DistanceIntoActiveEdge: 0 | |
=> UnresolvedSuffixes: 0 | |
Existing edge for node #0 starting with 'o' not found | |
Adding new edge to node #0 | |
=> node #0 --> o(0,#) | |
(0)──o | |
=== ITERATION 1 === | |
The next suffix of 'ooooooooo$' to add is '{o}' at indices 1,1 | |
=> ActiveNode: node #0 | |
=> ActiveEdge: none | |
=> DistanceIntoActiveEdge: 0 | |
=> UnresolvedSuffixes: 0 | |
Existing edge for node #0 starting with 'o' found. Values adjusted to: | |
=> ActiveEdge is now: oo(0,#) | |
=> DistanceIntoActiveEdge is now: 1 | |
=> UnresolvedSuffixes is now: 0 | |
(0)──oo | |
=== ITERATION 2 === | |
The next suffix of 'ooooooooo$' to add is 'o{o}' at indices 1,2 | |
=> ActiveNode: node #0 | |
=> ActiveEdge: ooo(0,#) | |
=> DistanceIntoActiveEdge: 1 | |
=> UnresolvedSuffixes: 1 | |
The next character on the current edge is 'o' (suffix added implicitly) | |
=> DistanceIntoActiveEdge is now: 2 | |
(0)──ooo | |
=== ITERATION 3 === | |
The next suffix of 'ooooooooo$' to add is 'oo{o}' at indices 1,3 | |
=> ActiveNode: node #0 | |
=> ActiveEdge: oooo(0,#) | |
=> DistanceIntoActiveEdge: 2 | |
=> UnresolvedSuffixes: 2 | |
The next character on the current edge is 'o' (suffix added implicitly) | |
=> DistanceIntoActiveEdge is now: 3 | |
(0)──oooo | |
=== ITERATION 4 === | |
The next suffix of 'ooooooooo$' to add is 'ooo{o}' at indices 1,4 | |
=> ActiveNode: node #0 | |
=> ActiveEdge: ooooo(0,#) | |
=> DistanceIntoActiveEdge: 3 | |
=> UnresolvedSuffixes: 3 | |
The next character on the current edge is 'o' (suffix added implicitly) | |
=> DistanceIntoActiveEdge is now: 4 | |
(0)──ooooo | |
=== ITERATION 5 === | |
The next suffix of 'ooooooooo$' to add is 'oooo{o}' at indices 1,5 | |
=> ActiveNode: node #0 | |
=> ActiveEdge: oooooo(0,#) | |
=> DistanceIntoActiveEdge: 4 | |
=> UnresolvedSuffixes: 4 | |
The next character on the current edge is 'o' (suffix added implicitly) | |
=> DistanceIntoActiveEdge is now: 5 | |
(0)──oooooo | |
=== ITERATION 6 === | |
The next suffix of 'ooooooooo$' to add is 'ooooo{o}' at indices 1,6 | |
=> ActiveNode: node #0 | |
=> ActiveEdge: ooooooo(0,#) | |
=> DistanceIntoActiveEdge: 5 | |
=> UnresolvedSuffixes: 5 | |
The next character on the current edge is 'o' (suffix added implicitly) | |
=> DistanceIntoActiveEdge is now: 6 | |
(0)──ooooooo | |
=== ITERATION 7 === | |
The next suffix of 'ooooooooo$' to add is 'oooooo{o}' at indices 1,7 | |
=> ActiveNode: node #0 | |
=> ActiveEdge: oooooooo(0,#) | |
=> DistanceIntoActiveEdge: 6 | |
=> UnresolvedSuffixes: 6 | |
The next character on the current edge is 'o' (suffix added implicitly) | |
=> DistanceIntoActiveEdge is now: 7 | |
(0)──oooooooo | |
=== ITERATION 8 === | |
The next suffix of 'ooooooooo$' to add is 'ooooooo{o}' at indices 1,8 | |
=> ActiveNode: node #0 | |
=> ActiveEdge: ooooooooo(0,#) | |
=> DistanceIntoActiveEdge: 7 | |
=> UnresolvedSuffixes: 7 | |
The next character on the current edge is 'o' (suffix added implicitly) | |
=> DistanceIntoActiveEdge is now: 8 | |
(0)──ooooooooo | |
=== ITERATION 9 === | |
The next suffix of 'ooooooooo$' to add is 'oooooooo{$}' at indices 1,9 | |
=> ActiveNode: node #0 | |
=> ActiveEdge: ooooooooo$(0,#) | |
=> DistanceIntoActiveEdge: 8 | |
=> UnresolvedSuffixes: 8 | |
Splitting edge ooooooooo$(0,#) at index 8 ('o') | |
=> Hierarchy is now: node #0 --> oooooooo(0,7) --> node #1 --> o$(8,#) | |
=> ActiveEdge is now: oooooooo(0,7) | |
Adding new edge to node #1 | |
=> node #1 --> $(9,#) | |
(0)──oooooooo─(1)┬─$ | |
└─o$ | |
The next suffix of 'ooooooooo$' to add is 'ooooooo{$}' at indices 2,9 | |
=> ActiveNode: node #0 | |
=> ActiveEdge: oooooooo(0,7) | |
=> DistanceIntoActiveEdge: 7 | |
=> UnresolvedSuffixes: 7 | |
Splitting edge oooooooo(0,7) at index 7 ('o') | |
=> Hierarchy is now: node #0 --> ooooooo(0,6) --> node #2 --> o(7,7) | |
=> ActiveEdge is now: ooooooo(0,6) | |
=> Connected node #1 to node #2 | |
Adding new edge to node #2 | |
=> node #2 --> $(9,#) | |
(0)──ooooooo─(2)┬─$ | |
└─o─(1)┬─$ | |
└─o$ | |
The next suffix of 'ooooooooo$' to add is 'oooooo{$}' at indices 3,9 | |
=> ActiveNode: node #0 | |
=> ActiveEdge: ooooooo(0,6) | |
=> DistanceIntoActiveEdge: 6 | |
=> UnresolvedSuffixes: 6 | |
Splitting edge ooooooo(0,6) at index 6 ('o') | |
=> Hierarchy is now: node #0 --> oooooo(0,5) --> node #3 --> o(6,6) | |
=> ActiveEdge is now: oooooo(0,5) | |
=> Connected node #2 to node #3 | |
Adding new edge to node #3 | |
=> node #3 --> $(9,#) | |
(0)──oooooo─(3)┬─$ | |
└─o─(2)┬─$ | |
└─o─(1)┬─$ | |
└─o$ | |
The next suffix of 'ooooooooo$' to add is 'ooooo{$}' at indices 4,9 | |
=> ActiveNode: node #0 | |
=> ActiveEdge: oooooo(0,5) | |
=> DistanceIntoActiveEdge: 5 | |
=> UnresolvedSuffixes: 5 | |
Splitting edge oooooo(0,5) at index 5 ('o') | |
=> Hierarchy is now: node #0 --> ooooo(0,4) --> node #4 --> o(5,5) | |
=> ActiveEdge is now: ooooo(0,4) | |
=> Connected node #3 to node #4 | |
Adding new edge to node #4 | |
=> node #4 --> $(9,#) | |
(0)──ooooo─(4)┬─$ | |
└─o─(3)┬─$ | |
└─o─(2)┬─$ | |
└─o─(1)┬─$ | |
└─o$ | |
The next suffix of 'ooooooooo$' to add is 'oooo{$}' at indices 5,9 | |
=> ActiveNode: node #0 | |
=> ActiveEdge: ooooo(0,4) | |
=> DistanceIntoActiveEdge: 4 | |
=> UnresolvedSuffixes: 4 | |
Splitting edge ooooo(0,4) at index 4 ('o') | |
=> Hierarchy is now: node #0 --> oooo(0,3) --> node #5 --> o(4,4) | |
=> ActiveEdge is now: oooo(0,3) | |
=> Connected node #4 to node #5 | |
Adding new edge to node #5 | |
=> node #5 --> $(9,#) | |
(0)──oooo─(5)┬─$ | |
└─o─(4)┬─$ | |
└─o─(3)┬─$ | |
└─o─(2)┬─$ | |
└─o─(1)┬─$ | |
└─o$ | |
The next suffix of 'ooooooooo$' to add is 'ooo{$}' at indices 6,9 | |
=> ActiveNode: node #0 | |
=> ActiveEdge: oooo(0,3) | |
=> DistanceIntoActiveEdge: 3 | |
=> UnresolvedSuffixes: 3 | |
Splitting edge oooo(0,3) at index 3 ('o') | |
=> Hierarchy is now: node #0 --> ooo(0,2) --> node #6 --> o(3,3) | |
=> ActiveEdge is now: ooo(0,2) | |
=> Connected node #5 to node #6 | |
Adding new edge to node #6 | |
=> node #6 --> $(9,#) | |
(0)──ooo─(6)┬─$ | |
└─o─(5)┬─$ | |
└─o─(4)┬─$ | |
└─o─(3)┬─$ | |
└─o─(2)┬─$ | |
└─o─(1)┬─$ | |
└─o$ | |
The next suffix of 'ooooooooo$' to add is 'oo{$}' at indices 7,9 | |
=> ActiveNode: node #0 | |
=> ActiveEdge: ooo(0,2) | |
=> DistanceIntoActiveEdge: 2 | |
=> UnresolvedSuffixes: 2 | |
Splitting edge ooo(0,2) at index 2 ('o') | |
=> Hierarchy is now: node #0 --> oo(0,1) --> node #7 --> o(2,2) | |
=> ActiveEdge is now: oo(0,1) | |
=> Connected node #6 to node #7 | |
Adding new edge to node #7 | |
=> node #7 --> $(9,#) | |
(0)──oo─(7)┬─$ | |
└─o─(6)┬─$ | |
└─o─(5)┬─$ | |
└─o─(4)┬─$ | |
└─o─(3)┬─$ | |
└─o─(2)┬─$ | |
└─o─(1)┬─$ | |
└─o$ | |
The next suffix of 'ooooooooo$' to add is 'o{$}' at indices 8,9 | |
=> ActiveNode: node #0 | |
=> ActiveEdge: oo(0,1) | |
=> DistanceIntoActiveEdge: 1 | |
=> UnresolvedSuffixes: 1 | |
Splitting edge oo(0,1) at index 1 ('o') | |
=> Hierarchy is now: node #0 --> o(0,0) --> node #8 --> o(1,1) | |
=> ActiveEdge is now: o(0,0) | |
=> Connected node #7 to node #8 | |
Adding new edge to node #8 | |
=> node #8 --> $(9,#) | |
(0)──o─(8)┬─$ | |
└─o─(7)┬─$ | |
└─o─(6)┬─$ | |
└─o─(5)┬─$ | |
└─o─(4)┬─$ | |
└─o─(3)┬─$ | |
└─o─(2)┬─$ | |
└─o─(1)┬─$ | |
└─o$ | |
The next suffix of 'ooooooooo$' to add is '{$}' at indices 9,9 | |
=> ActiveNode: node #0 | |
=> ActiveEdge: none | |
=> DistanceIntoActiveEdge: 0 | |
=> UnresolvedSuffixes: 0 | |
Existing edge for node #0 starting with '$' not found | |
Adding new edge to node #0 | |
=> node #0 --> $(9,#) | |
(0)┬─$ | |
└─o─(8)┬─$ | |
└─o─(7)┬─$ | |
└─o─(6)┬─$ | |
└─o─(5)┬─$ | |
└─o─(4)┬─$ | |
└─o─(3)┬─$ | |
└─o─(2)┬─$ | |
└─o─(1)┬─$ | |
└─o$ |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
=== ITERATION 0 === | |
The next suffix of 'mississippi$' to add is '{m}' at indices 0,0 | |
=> ActiveNode: node #0 | |
=> ActiveEdge: none | |
=> DistanceIntoActiveEdge: 0 | |
=> UnresolvedSuffixes: 0 | |
Existing edge for node #0 starting with 'm' not found | |
Adding new edge to node #0 | |
=> node #0 --> m(0,#) | |
(0)──m | |
=== ITERATION 1 === | |
The next suffix of 'mississippi$' to add is '{i}' at indices 1,1 | |
=> ActiveNode: node #0 | |
=> ActiveEdge: none | |
=> DistanceIntoActiveEdge: 0 | |
=> UnresolvedSuffixes: 0 | |
Existing edge for node #0 starting with 'i' not found | |
Adding new edge to node #0 | |
=> node #0 --> i(1,#) | |
(0)┬─i | |
└─mi | |
=== ITERATION 2 === | |
The next suffix of 'mississippi$' to add is '{s}' at indices 2,2 | |
=> ActiveNode: node #0 | |
=> ActiveEdge: none | |
=> DistanceIntoActiveEdge: 0 | |
=> UnresolvedSuffixes: 0 | |
Existing edge for node #0 starting with 's' not found | |
Adding new edge to node #0 | |
=> node #0 --> s(2,#) | |
(0)┬─is | |
├─mis | |
└─s | |
=== ITERATION 3 === | |
The next suffix of 'mississippi$' to add is '{s}' at indices 3,3 | |
=> ActiveNode: node #0 | |
=> ActiveEdge: none | |
=> DistanceIntoActiveEdge: 0 | |
=> UnresolvedSuffixes: 0 | |
Existing edge for node #0 starting with 's' found. Values adjusted to: | |
=> ActiveEdge is now: ss(2,#) | |
=> DistanceIntoActiveEdge is now: 1 | |
=> UnresolvedSuffixes is now: 0 | |
(0)┬─iss | |
├─miss | |
└─ss | |
=== ITERATION 4 === | |
The next suffix of 'mississippi$' to add is 's{i}' at indices 3,4 | |
=> ActiveNode: node #0 | |
=> ActiveEdge: ssi(2,#) | |
=> DistanceIntoActiveEdge: 1 | |
=> UnresolvedSuffixes: 1 | |
Splitting edge ssi(2,#) at index 3 ('s') | |
=> Hierarchy is now: node #0 --> s(2,2) --> node #1 --> si(3,#) | |
=> ActiveEdge is now: s(2,2) | |
Adding new edge to node #1 | |
=> node #1 --> i(4,#) | |
(0)┬─issi | |
├─missi | |
└─s─────(1)┬─i | |
└─si | |
The next suffix of 'mississippi$' to add is '{i}' at indices 4,4 | |
=> ActiveNode: node #0 | |
=> ActiveEdge: none | |
=> DistanceIntoActiveEdge: 0 | |
=> UnresolvedSuffixes: 0 | |
Existing edge for node #0 starting with 'i' found. Values adjusted to: | |
=> ActiveEdge is now: issi(1,#) | |
=> DistanceIntoActiveEdge is now: 1 | |
=> UnresolvedSuffixes is now: 0 | |
(0)┬─issi | |
├─missi | |
└─s─────(1)┬─i | |
└─si | |
=== ITERATION 5 === | |
The next suffix of 'mississippi$' to add is 'i{s}' at indices 4,5 | |
=> ActiveNode: node #0 | |
=> ActiveEdge: issis(1,#) | |
=> DistanceIntoActiveEdge: 1 | |
=> UnresolvedSuffixes: 1 | |
The next character on the current edge is 's' (suffix added implicitly) | |
=> DistanceIntoActiveEdge is now: 2 | |
(0)┬─issis | |
├─missis | |
└─s──────(1)┬─is | |
└─sis | |
=== ITERATION 6 === | |
The next suffix of 'mississippi$' to add is 'is{s}' at indices 4,6 | |
=> ActiveNode: node #0 | |
=> ActiveEdge: ississ(1,#) | |
=> DistanceIntoActiveEdge: 2 | |
=> UnresolvedSuffixes: 2 | |
The next character on the current edge is 's' (suffix added implicitly) | |
=> DistanceIntoActiveEdge is now: 3 | |
(0)┬─ississ | |
├─mississ | |
└─s───────(1)┬─iss | |
└─siss | |
=== ITERATION 7 === | |
The next suffix of 'mississippi$' to add is 'iss{i}' at indices 4,7 | |
=> ActiveNode: node #0 | |
=> ActiveEdge: ississi(1,#) | |
=> DistanceIntoActiveEdge: 3 | |
=> UnresolvedSuffixes: 3 | |
The next character on the current edge is 'i' (suffix added implicitly) | |
=> DistanceIntoActiveEdge is now: 4 | |
(0)┬─ississi | |
├─mississi | |
└─s────────(1)┬─issi | |
└─sissi | |
=== ITERATION 8 === | |
The next suffix of 'mississippi$' to add is 'issi{p}' at indices 4,8 | |
=> ActiveNode: node #0 | |
=> ActiveEdge: ississip(1,#) | |
=> DistanceIntoActiveEdge: 4 | |
=> UnresolvedSuffixes: 4 | |
Splitting edge ississip(1,#) at index 5 ('s') | |
=> Hierarchy is now: node #0 --> issi(1,4) --> node #2 --> ssip(5,#) | |
=> ActiveEdge is now: issi(1,4) | |
Adding new edge to node #2 | |
=> node #2 --> p(8,#) | |
Active point is now at or beyond edge boundary and will be moved until it falls inside an edge boundary | |
(0)┬─issi──────(2)┬─p | |
│ └─ssip | |
├─mississip | |
└─s─────────(1)┬─issip | |
└─sissip | |
The next suffix of 'mississippi$' to add is 'ssi{p}' at indices 5,8 | |
=> ActiveNode: node #1 | |
=> ActiveEdge: sissip(3,#) | |
=> DistanceIntoActiveEdge: 2 | |
=> UnresolvedSuffixes: 3 | |
Splitting edge sissip(3,#) at index 5 ('s') | |
=> Hierarchy is now: node #1 --> si(3,4) --> node #3 --> ssip(5,#) | |
=> ActiveEdge is now: si(3,4) | |
=> Connected node #2 to node #3 | |
Adding new edge to node #3 | |
=> node #3 --> p(8,#) | |
The linked node for active node node #1 is [null] | |
Active point is now at or beyond edge boundary and will be moved until it falls inside an edge boundary | |
(0)┬─issi──────(2)┬─p | |
│ └─ssip | |
├─mississip | |
└─s─────────(1)┬─issip | |
└─si────(3)┬─p | |
└─ssip | |
The next suffix of 'mississippi$' to add is 'si{p}' at indices 6,8 | |
=> ActiveNode: node #1 | |
=> ActiveEdge: issip(4,#) | |
=> DistanceIntoActiveEdge: 1 | |
=> UnresolvedSuffixes: 2 | |
Splitting edge issip(4,#) at index 5 ('s') | |
=> Hierarchy is now: node #1 --> i(4,4) --> node #4 --> ssip(5,#) | |
=> ActiveEdge is now: i(4,4) | |
=> Connected node #3 to node #4 | |
Adding new edge to node #4 | |
=> node #4 --> p(8,#) | |
The linked node for active node node #1 is [null] | |
(0)┬─issi──────(2)┬─p | |
│ └─ssip | |
├─mississip | |
└─s─────────(1)┬─i──(4)┬─p | |
│ └─ssip | |
└─si─(3)┬─p | |
└─ssip | |
The next suffix of 'mississippi$' to add is 'i{p}' at indices 7,8 | |
=> ActiveNode: node #0 | |
=> ActiveEdge: issi(1,4) | |
=> DistanceIntoActiveEdge: 1 | |
=> UnresolvedSuffixes: 1 | |
Splitting edge issi(1,4) at index 2 ('s') | |
=> Hierarchy is now: node #0 --> i(1,1) --> node #5 --> ssi(2,4) | |
=> ActiveEdge is now: i(1,1) | |
=> Connected node #4 to node #5 | |
Adding new edge to node #5 | |
=> node #5 --> p(8,#) | |
(0)┬─i─────────(5)┬─p | |
│ └─ssi─(2)┬─p | |
│ └─ssip | |
├─mississip | |
└─s─────────(1)┬─i──(4)┬─p | |
│ └─ssip | |
└─si─(3)┬─p | |
└─ssip | |
The next suffix of 'mississippi$' to add is '{p}' at indices 8,8 | |
=> ActiveNode: node #0 | |
=> ActiveEdge: none | |
=> DistanceIntoActiveEdge: 0 | |
=> UnresolvedSuffixes: 0 | |
Existing edge for node #0 starting with 'p' not found | |
Adding new edge to node #0 | |
=> node #0 --> p(8,#) | |
(0)┬─i─────────(5)┬─p | |
│ └─ssi─(2)┬─p | |
│ └─ssip | |
├─mississip | |
├─p | |
└─s─────────(1)┬─i──(4)┬─p | |
│ └─ssip | |
└─si─(3)┬─p | |
└─ssip | |
=== ITERATION 9 === | |
The next suffix of 'mississippi$' to add is '{p}' at indices 9,9 | |
=> ActiveNode: node #0 | |
=> ActiveEdge: none | |
=> DistanceIntoActiveEdge: 0 | |
=> UnresolvedSuffixes: 0 | |
Existing edge for node #0 starting with 'p' found. Values adjusted to: | |
=> ActiveEdge is now: pp(8,#) | |
=> DistanceIntoActiveEdge is now: 1 | |
=> UnresolvedSuffixes is now: 0 | |
(0)┬─i──────────(5)┬─pp | |
│ └─ssi─(2)┬─pp | |
│ └─ssipp | |
├─mississipp | |
├─pp | |
└─s──────────(1)┬─i──(4)┬─pp | |
│ └─ssipp | |
└─si─(3)┬─pp | |
└─ssipp | |
=== ITERATION 10 === | |
The next suffix of 'mississippi$' to add is 'p{i}' at indices 9,10 | |
=> ActiveNode: node #0 | |
=> ActiveEdge: ppi(8,#) | |
=> DistanceIntoActiveEdge: 1 | |
=> UnresolvedSuffixes: 1 | |
Splitting edge ppi(8,#) at index 9 ('p') | |
=> Hierarchy is now: node #0 --> p(8,8) --> node #6 --> pi(9,#) | |
=> ActiveEdge is now: p(8,8) | |
Adding new edge to node #6 | |
=> node #6 --> i(10,#) | |
(0)┬─i───────────(5)┬─ppi | |
│ └─ssi─(2)┬─ppi | |
│ └─ssippi | |
├─mississippi | |
├─p───────────(6)┬─i | |
│ └─pi | |
└─s───────────(1)┬─i──(4)┬─ppi | |
│ └─ssippi | |
└─si─(3)┬─ppi | |
└─ssippi | |
The next suffix of 'mississippi$' to add is '{i}' at indices 10,10 | |
=> ActiveNode: node #0 | |
=> ActiveEdge: none | |
=> DistanceIntoActiveEdge: 0 | |
=> UnresolvedSuffixes: 0 | |
Existing edge for node #0 starting with 'i' found. Values adjusted to: | |
Active point is now at or beyond edge boundary and will be moved until it falls inside an edge boundary | |
=> ActiveEdge is now: | |
=> DistanceIntoActiveEdge is now: 0 | |
=> UnresolvedSuffixes is now: 0 | |
(0)┬─i───────────(5)┬─ppi | |
│ └─ssi─(2)┬─ppi | |
│ └─ssippi | |
├─mississippi | |
├─p───────────(6)┬─i | |
│ └─pi | |
└─s───────────(1)┬─i──(4)┬─ppi | |
│ └─ssippi | |
└─si─(3)┬─ppi | |
└─ssippi | |
=== ITERATION 11 === | |
The next suffix of 'mississippi$' to add is 'i{$}' at indices 10,11 | |
=> ActiveNode: node #5 | |
=> ActiveEdge: none | |
=> DistanceIntoActiveEdge: 0 | |
=> UnresolvedSuffixes: 1 | |
Existing edge for node #5 starting with '$' not found | |
Adding new edge to node #5 | |
=> node #5 --> $(11,#) | |
The linked node for active node node #5 is [null] | |
(0)┬─i────────────(5)┬─$ | |
│ ├─ppi$ | |
│ └─ssi──(2)┬─ppi$ | |
│ └─ssippi$ | |
├─mississippi$ | |
├─p────────────(6)┬─i$ | |
│ └─pi$ | |
└─s────────────(1)┬─i──(4)┬─ppi$ | |
│ └─ssippi$ | |
└─si─(3)┬─ppi$ | |
└─ssippi$ | |
The next suffix of 'mississippi$' to add is '{$}' at indices 11,11 | |
=> ActiveNode: node #0 | |
=> ActiveEdge: none | |
=> DistanceIntoActiveEdge: 0 | |
=> UnresolvedSuffixes: 0 | |
Existing edge for node #0 starting with '$' not found | |
Adding new edge to node #0 | |
=> node #0 --> $(11,#) | |
(0)┬─$ | |
├─i────────────(5)┬─$ | |
│ ├─ppi$ | |
│ └─ssi──(2)┬─ppi$ | |
│ └─ssippi$ | |
├─mississippi$ | |
├─p────────────(6)┬─i$ | |
│ └─pi$ | |
└─s────────────(1)┬─i──(4)┬─ppi$ | |
│ └─ssippi$ | |
└─si─(3)┬─ppi$ | |
└─ssippi$ |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
=== ITERATION 0 === | |
The next suffix of 'almasamolmaz' to add is '{a}' at indices 0,0 | |
=> ActiveNode: node #0 | |
=> ActiveEdge: none | |
=> DistanceIntoActiveEdge: 0 | |
=> UnresolvedSuffixes: 0 | |
Existing edge for node #0 starting with 'a' not found | |
Adding new edge to node #0 | |
=> node #0 --> a(0,#) | |
(0)──a | |
=== ITERATION 1 === | |
The next suffix of 'almasamolmaz' to add is '{l}' at indices 1,1 | |
=> ActiveNode: node #0 | |
=> ActiveEdge: none | |
=> DistanceIntoActiveEdge: 0 | |
=> UnresolvedSuffixes: 0 | |
Existing edge for node #0 starting with 'l' not found | |
Adding new edge to node #0 | |
=> node #0 --> l(1,#) | |
(0)┬─al | |
└─l | |
=== ITERATION 2 === | |
The next suffix of 'almasamolmaz' to add is '{m}' at indices 2,2 | |
=> ActiveNode: node #0 | |
=> ActiveEdge: none | |
=> DistanceIntoActiveEdge: 0 | |
=> UnresolvedSuffixes: 0 | |
Existing edge for node #0 starting with 'm' not found | |
Adding new edge to node #0 | |
=> node #0 --> m(2,#) | |
(0)┬─alm | |
├─lm | |
└─m | |
=== ITERATION 3 === | |
The next suffix of 'almasamolmaz' to add is '{a}' at indices 3,3 | |
=> ActiveNode: node #0 | |
=> ActiveEdge: none | |
=> DistanceIntoActiveEdge: 0 | |
=> UnresolvedSuffixes: 0 | |
Existing edge for node #0 starting with 'a' found. Values adjusted to: | |
=> ActiveEdge is now: alma(0,#) | |
=> DistanceIntoActiveEdge is now: 1 | |
=> UnresolvedSuffixes is now: 0 | |
(0)┬─alma | |
├─lma | |
└─ma | |
=== ITERATION 4 === | |
The next suffix of 'almasamolmaz' to add is 'a{s}' at indices 3,4 | |
=> ActiveNode: node #0 | |
=> ActiveEdge: almas(0,#) | |
=> DistanceIntoActiveEdge: 1 | |
=> UnresolvedSuffixes: 1 | |
Splitting edge almas(0,#) at index 1 ('l') | |
=> Hierarchy is now: node #0 --> a(0,0) --> node #1 --> lmas(1,#) | |
=> ActiveEdge is now: a(0,0) | |
Adding new edge to node #1 | |
=> node #1 --> s(4,#) | |
(0)┬─a────(1)┬─lmas | |
│ └─s | |
├─lmas | |
└─mas | |
The next suffix of 'almasamolmaz' to add is '{s}' at indices 4,4 | |
=> ActiveNode: node #0 | |
=> ActiveEdge: none | |
=> DistanceIntoActiveEdge: 0 | |
=> UnresolvedSuffixes: 0 | |
Existing edge for node #0 starting with 's' not found | |
Adding new edge to node #0 | |
=> node #0 --> s(4,#) | |
(0)┬─a────(1)┬─lmas | |
│ └─s | |
├─lmas | |
├─mas | |
└─s | |
=== ITERATION 5 === | |
The next suffix of 'almasamolmaz' to add is '{a}' at indices 5,5 | |
=> ActiveNode: node #0 | |
=> ActiveEdge: none | |
=> DistanceIntoActiveEdge: 0 | |
=> UnresolvedSuffixes: 0 | |
Existing edge for node #0 starting with 'a' found. Values adjusted to: | |
Active point is now at or beyond edge boundary and will be moved until it falls inside an edge boundary | |
=> ActiveEdge is now: | |
=> DistanceIntoActiveEdge is now: 0 | |
=> UnresolvedSuffixes is now: 0 | |
(0)┬─a─────(1)┬─lmasa | |
│ └─sa | |
├─lmasa | |
├─masa | |
└─sa | |
=== ITERATION 6 === | |
The next suffix of 'almasamolmaz' to add is 'a{m}' at indices 5,6 | |
=> ActiveNode: node #1 | |
=> ActiveEdge: none | |
=> DistanceIntoActiveEdge: 0 | |
=> UnresolvedSuffixes: 1 | |
Existing edge for node #1 starting with 'm' not found | |
Adding new edge to node #1 | |
=> node #1 --> m(6,#) | |
The linked node for active node node #1 is [null] | |
(0)┬─a──────(1)┬─lmasam | |
│ ├─m | |
│ └─sam | |
├─lmasam | |
├─masam | |
└─sam | |
The next suffix of 'almasamolmaz' to add is '{m}' at indices 6,6 | |
=> ActiveNode: node #0 | |
=> ActiveEdge: none | |
=> DistanceIntoActiveEdge: 0 | |
=> UnresolvedSuffixes: 0 | |
Existing edge for node #0 starting with 'm' found. Values adjusted to: | |
=> ActiveEdge is now: masam(2,#) | |
=> DistanceIntoActiveEdge is now: 1 | |
=> UnresolvedSuffixes is now: 0 | |
(0)┬─a──────(1)┬─lmasam | |
│ ├─m | |
│ └─sam | |
├─lmasam | |
├─masam | |
└─sam | |
=== ITERATION 7 === | |
The next suffix of 'almasamolmaz' to add is 'm{o}' at indices 6,7 | |
=> ActiveNode: node #0 | |
=> ActiveEdge: masamo(2,#) | |
=> DistanceIntoActiveEdge: 1 | |
=> UnresolvedSuffixes: 1 | |
Splitting edge masamo(2,#) at index 3 ('a') | |
=> Hierarchy is now: node #0 --> m(2,2) --> node #2 --> asamo(3,#) | |
=> ActiveEdge is now: m(2,2) | |
Adding new edge to node #2 | |
=> node #2 --> o(7,#) | |
(0)┬─a───────(1)┬─lmasamo | |
│ ├─mo | |
│ └─samo | |
├─lmasamo | |
├─m───────(2)┬─asamo | |
│ └─o | |
└─samo | |
The next suffix of 'almasamolmaz' to add is '{o}' at indices 7,7 | |
=> ActiveNode: node #0 | |
=> ActiveEdge: none | |
=> DistanceIntoActiveEdge: 0 | |
=> UnresolvedSuffixes: 0 | |
Existing edge for node #0 starting with 'o' not found | |
Adding new edge to node #0 | |
=> node #0 --> o(7,#) | |
(0)┬─a───────(1)┬─lmasamo | |
│ ├─mo | |
│ └─samo | |
├─lmasamo | |
├─m───────(2)┬─asamo | |
│ └─o | |
├─o | |
└─samo | |
=== ITERATION 8 === | |
The next suffix of 'almasamolmaz' to add is '{l}' at indices 8,8 | |
=> ActiveNode: node #0 | |
=> ActiveEdge: none | |
=> DistanceIntoActiveEdge: 0 | |
=> UnresolvedSuffixes: 0 | |
Existing edge for node #0 starting with 'l' found. Values adjusted to: | |
=> ActiveEdge is now: lmasamol(1,#) | |
=> DistanceIntoActiveEdge is now: 1 | |
=> UnresolvedSuffixes is now: 0 | |
(0)┬─a────────(1)┬─lmasamol | |
│ ├─mol | |
│ └─samol | |
├─lmasamol | |
├─m────────(2)┬─asamol | |
│ └─ol | |
├─ol | |
└─samol | |
=== ITERATION 9 === | |
The next suffix of 'almasamolmaz' to add is 'l{m}' at indices 8,9 | |
=> ActiveNode: node #0 | |
=> ActiveEdge: lmasamolm(1,#) | |
=> DistanceIntoActiveEdge: 1 | |
=> UnresolvedSuffixes: 1 | |
The next character on the current edge is 'm' (suffix added implicitly) | |
=> DistanceIntoActiveEdge is now: 2 | |
(0)┬─a─────────(1)┬─lmasamolm | |
│ ├─molm | |
│ └─samolm | |
├─lmasamolm | |
├─m─────────(2)┬─asamolm | |
│ └─olm | |
├─olm | |
└─samolm | |
=== ITERATION 10 === | |
The next suffix of 'almasamolmaz' to add is 'lm{a}' at indices 8,10 | |
=> ActiveNode: node #0 | |
=> ActiveEdge: lmasamolma(1,#) | |
=> DistanceIntoActiveEdge: 2 | |
=> UnresolvedSuffixes: 2 | |
The next character on the current edge is 'a' (suffix added implicitly) | |
=> DistanceIntoActiveEdge is now: 3 | |
(0)┬─a──────────(1)┬─lmasamolma | |
│ ├─molma | |
│ └─samolma | |
├─lmasamolma | |
├─m──────────(2)┬─asamolma | |
│ └─olma | |
├─olma | |
└─samolma | |
=== ITERATION 11 === | |
The next suffix of 'almasamolmaz' to add is 'lma{z}' at indices 8,11 | |
=> ActiveNode: node #0 | |
=> ActiveEdge: lmasamolmaz(1,#) | |
=> DistanceIntoActiveEdge: 3 | |
=> UnresolvedSuffixes: 3 | |
Splitting edge lmasamolmaz(1,#) at index 4 ('s') | |
=> Hierarchy is now: node #0 --> lma(1,3) --> node #3 --> samolmaz(4,#) | |
=> ActiveEdge is now: lma(1,3) | |
Adding new edge to node #3 | |
=> node #3 --> z(11,#) | |
Active point is now at or beyond edge boundary and will be moved until it falls inside an edge boundary | |
(0)┬─a────────(1)┬─lmasamolmaz | |
│ ├─molmaz | |
│ └─samolmaz | |
├─lma──────(3)┬─samolmaz | |
│ └─z | |
├─m────────(2)┬─asamolmaz | |
│ └─olmaz | |
├─olmaz | |
└─samolmaz | |
The next suffix of 'almasamolmaz' to add is 'ma{z}' at indices 9,11 | |
=> ActiveNode: node #2 | |
=> ActiveEdge: asamolmaz(3,#) | |
=> DistanceIntoActiveEdge: 1 | |
=> UnresolvedSuffixes: 2 | |
Splitting edge asamolmaz(3,#) at index 4 ('s') | |
=> Hierarchy is now: node #2 --> a(3,3) --> node #4 --> samolmaz(4,#) | |
=> ActiveEdge is now: a(3,3) | |
=> Connected node #3 to node #4 | |
Adding new edge to node #4 | |
=> node #4 --> z(11,#) | |
The linked node for active node node #2 is [null] | |
Active point is now at or beyond edge boundary and will be moved until it falls inside an edge boundary | |
(0)┬─a────────(1)┬─lmasamolmaz | |
│ ├─molmaz | |
│ └─samolmaz | |
├─lma──────(3)┬─samolmaz | |
│ └─z | |
├─m────────(2)┬─a─────(4)┬─samolmaz | |
│ │ └─z | |
│ └─olmaz | |
├─olmaz | |
└─samolmaz | |
The next suffix of 'almasamolmaz' to add is 'a{z}' at indices 10,11 | |
=> ActiveNode: node #1 | |
=> ActiveEdge: none | |
=> DistanceIntoActiveEdge: 0 | |
=> UnresolvedSuffixes: 1 | |
Existing edge for node #1 starting with 'z' not found | |
Adding new edge to node #1 | |
=> node #1 --> z(11,#) | |
The linked node for active node node #1 is [null] | |
(0)┬─a────────(1)┬─lmasamolmaz | |
│ ├─molmaz | |
│ ├─samolmaz | |
│ └─z | |
├─lma──────(3)┬─samolmaz | |
│ └─z | |
├─m────────(2)┬─a─────(4)┬─samolmaz | |
│ │ └─z | |
│ └─olmaz | |
├─olmaz | |
└─samolmaz | |
The next suffix of 'almasamolmaz' to add is '{z}' at indices 11,11 | |
=> ActiveNode: node #0 | |
=> ActiveEdge: none | |
=> DistanceIntoActiveEdge: 0 | |
=> UnresolvedSuffixes: 0 | |
Existing edge for node #0 starting with 'z' not found | |
Adding new edge to node #0 | |
=> node #0 --> z(11,#) | |
(0)┬─a────────(1)┬─lmasamolmaz | |
│ ├─molmaz | |
│ ├─samolmaz | |
│ └─z | |
├─lma──────(3)┬─samolmaz | |
│ └─z | |
├─m────────(2)┬─a─────(4)┬─samolmaz | |
│ │ └─z | |
│ └─olmaz | |
├─olmaz | |
├─samolmaz | |
└─z |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment