Created
May 19, 2016 20:32
-
-
Save matmoody/28b6830ff1a5ec09af0df7f408639b8a to your computer and use it in GitHub Desktop.
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
import numpy as np | |
import pandas as pd | |
import matplotlib.pyplot as plt | |
import seaborn as sns | |
from sklearn import datasets | |
%matplotlib inline | |
iris = datasets.load_iris() | |
# Plot petal length & sepal width | |
plt.scatter(iris.data[:,1], iris.data[:, 2], c=iris.target) | |
plt.xlabel(iris.feature_names[1]) | |
plt.ylabel(iris.feature_names[2]) | |
# Simplify and only take two classes | |
plt.scatter(iris.data[0:100, 1], iris.data[0:100, 2], c=iris.target[0:100]) | |
plt.xlabel(iris.feature_names[1]) | |
plt.ylabel(iris.feature_names[2]) | |
# Fit SVM | |
svc = svm.SVC(kernel='linear', C=1) | |
X = iris.data[:, 1:3] | |
y = iris.target[:] | |
svc.fit(X, y) | |
from matplotlib.colors import ListedColormap | |
cmap_light = ListedColormap(['#FFAAAA', '#AAFFAA', '#AAAAFF']) | |
cmap_bold = ListedColormap(['#FF0000', '#00FF00', '#0000FF']) | |
# Plot the SVM | |
def plot_estimator(estimator, X, y): | |
estimator.fit(X, y) | |
x_min, x_max = X[:, 0].min() - .1, X[:, 0].max() + .1 | |
y_min, y_max = X[:, 1].min() - .1, X[:, 1].max() + .1 | |
xx, yy = np.meshgrid(np.linspace(x_min, x_max, 100), | |
np.linspace(y_min, y_max, 100)) | |
Z = estimator.predict(np.c_[xx.ravel(), yy.ravel()]) | |
# Put the result into a color plot | |
Z = Z.reshape(xx.shape) | |
plt.figure() | |
plt.pcolormesh(xx, yy, Z, cmap=cmap_light) | |
# Plot also the training points | |
plt.scatter(X[:, 0], X[:, 1], c=y, cmap=cmap_bold) | |
plt.axis('tight') | |
plt.axis('off') | |
plt.tight_layout() | |
plot_estimator(svc, X, y) |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment