Created
April 21, 2016 04:07
-
-
Save matmoody/63b42e843f8d699172aea5d628d06395 to your computer and use it in GitHub Desktop.
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
# Frequency | |
import collections | |
testlist = [1, 4, 5, 6, 7, 9, 9, 9] | |
c = collections.Counter(testlist) | |
print c | |
# calculate number of instances in list | |
count_sum = sum(c.values()) | |
for k,v in c.iteritems(): | |
print "Frequency of number " + str(k) + " is " + str(float(v) / count_sum)) | |
# Generating a Box Plot | |
import matplotlib.pyplot as plt | |
%matplotlib inline | |
x = [1, 1, 1, 1, 1, 1, 1, 1, 2, 2, 2, 3, 4, 4, 4, 4, 5, 6, 6, 6, 7, 7,7,7,7, 7, 7, 8, 9, 9] | |
plt.boxplot(x) | |
plt.show() | |
# Generate a Histogram of data | |
plt.hist(x, histtype='bar') | |
plt.show() | |
# Generate QQ Plot | |
import scipy.stats as stats | |
plt.figure() | |
test_data = np.random.normal(size=1000) | |
graph1 = stats.probplot(test_data, dist='norm', plot=plt) | |
plt.title('Normal Distribution') | |
plt.show() # first graph | |
plt.figure | |
test_data2 = np.random.uniform(size=1000) | |
graph2 = stats.probplot(test_data2, dist='norm', plot=plt) | |
plt.title('Uniform Distribution') | |
plt.show() # second graph |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment