Skip to content

Instantly share code, notes, and snippets.

View matmoody's full-sized avatar

Matthew matmoody

View GitHub Profile
@matmoody
matmoody / serialread.py
Created January 30, 2025 21:06
Stalker Radar MPH from serial port to Macbook M2
import time
import serial
import logging
from datetime import datetime
def hex_to_speed(hex_str):
"""Convert hex string to speed value"""
try:
# Convert from hex to decimal and add 4
# (hex 47 = decimal 71 -> 47 mph)
Verifying my Blockstack ID is secured with the address 1Lq55Q1TsUxhXuifeevzX2NVwL6ZqpXRSi https://explorer.blockstack.org/address/1Lq55Q1TsUxhXuifeevzX2NVwL6ZqpXRSi
import random
import matplotlib.pyplot as plt
# Normally distributed random variable with expected value 0 and variance 1
for _ in range(10):
if(random.random() < .5):
print "head"
else:
@matmoody
matmoody / linear_svc.py
Last active May 23, 2016 16:24
Linear SVC on iris data set
import pandas as pd
import numpy as np
# Read in iris data set
iris = pd.read_csv("https://raw.githubusercontent.com/Thinkful-Ed/curric-data-001-data-sets/master/iris/iris.data.csv")
# Add column names
iris.columns = ['SepalLengthCm', 'SepalWidthCm', 'PetalLengthCm', 'PetalWidthCm', 'Species']
# Split data into features and target
import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
import seaborn as sns
from sklearn import datasets
%matplotlib inline
iris = datasets.load_iris()
@matmoody
matmoody / k_means1.py
Created May 19, 2016 17:49
Visualization prior to running kmeans
import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
import seaborn as sns
%matplotlib inline
iris = pd.read_csv("https://raw.githubusercontent.com/Thinkful-Ed/curric-data-001-data-sets/master/iris/iris.data.csv", names = ['Sepal_l', 'Sepal_w', 'petal_l', 'petal_w', 'class'])
# Make class categorical variable
import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
import seaborn as sns
%matplotlib inline
iris = pd.read_csv("https://raw.githubusercontent.com/Thinkful-Ed/curric-data-001-data-sets/master/iris/iris.data.csv", names = ['Sepal_l', 'Sepal_w', 'petal_l', 'petal_w', 'class'])
# Plot iris data
@matmoody
matmoody / nb.py
Created May 17, 2016 03:26
Naive Bayes model for weight and gender data
import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
%matplotlib inline
import seaborn as sns
actid = pd.read_csv("https://raw.githubusercontent.com/Thinkful-Ed/curric-data-001-data-sets/master/ideal-weight/ideal_weight.csv")
actid.head()
import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
%matplotlib inline
import seaborn as sns
loan_data = pd.read_csv("loansData.csv")
loan_data.head()
import numpy as np
import statsmodels.formula.api as smf
import pandas as pd
# Set seed for reproducible results
np.random.seed(414)
# Generate toy data
# Return evenly spaced #'x over specified interval