Created
September 30, 2019 03:27
-
-
Save matpalm/779c2c67d5ec195845ae2ab01570d883 to your computer and use it in GitHub Desktop.
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
1/Unknown - 0s 14ms/step | |
--------------------------------------------------------------------------- | |
ValueError Traceback (most recent call last) | |
<ipython-input-2-231b4cfe798d> in <module>() | |
19 dataset = dataset.batch(4).prefetch(1) | |
20 | |
---> 21 model.fit(dataset) | |
/usr/local/Cellar/python3/3.6.4_2/Frameworks/Python.framework/Versions/3.6/lib/python3.6/site-packages/tensorflow_core/python/keras/engine/training.py in fit(self, x, y, batch_size, epochs, verbose, callbacks, validation_split, validation_data, shuffle, class_weight, sample_weight, initial_epoch, steps_per_epoch, validation_steps, validation_freq, max_queue_size, workers, use_multiprocessing, **kwargs) | |
732 max_queue_size=max_queue_size, | |
733 workers=workers, | |
--> 734 use_multiprocessing=use_multiprocessing) | |
735 | |
736 def evaluate(self, | |
/usr/local/Cellar/python3/3.6.4_2/Frameworks/Python.framework/Versions/3.6/lib/python3.6/site-packages/tensorflow_core/python/keras/engine/training_v2.py in fit(self, model, x, y, batch_size, epochs, verbose, callbacks, validation_split, validation_data, shuffle, class_weight, sample_weight, initial_epoch, steps_per_epoch, validation_steps, validation_freq, **kwargs) | |
322 mode=ModeKeys.TRAIN, | |
323 training_context=training_context, | |
--> 324 total_epochs=epochs) | |
325 cbks.make_logs(model, epoch_logs, training_result, ModeKeys.TRAIN) | |
326 | |
/usr/local/Cellar/python3/3.6.4_2/Frameworks/Python.framework/Versions/3.6/lib/python3.6/site-packages/tensorflow_core/python/keras/engine/training_v2.py in run_one_epoch(model, iterator, execution_function, dataset_size, batch_size, strategy, steps_per_epoch, num_samples, mode, training_context, total_epochs) | |
121 step=step, mode=mode, size=current_batch_size) as batch_logs: | |
122 try: | |
--> 123 batch_outs = execution_function(iterator) | |
124 except (StopIteration, errors.OutOfRangeError): | |
125 # TODO(kaftan): File bug about tf function and errors.OutOfRangeError? | |
/usr/local/Cellar/python3/3.6.4_2/Frameworks/Python.framework/Versions/3.6/lib/python3.6/site-packages/tensorflow_core/python/keras/engine/training_v2_utils.py in execution_function(input_fn) | |
84 # `numpy` translates Tensors to values in Eager mode. | |
85 return nest.map_structure(_non_none_constant_value, | |
---> 86 distributed_function(input_fn)) | |
87 | |
88 return execution_function | |
/usr/local/Cellar/python3/3.6.4_2/Frameworks/Python.framework/Versions/3.6/lib/python3.6/site-packages/tensorflow_core/python/eager/def_function.py in __call__(self, *args, **kwds) | |
425 # This is the first call of __call__, so we have to initialize. | |
426 initializer_map = object_identity.ObjectIdentityDictionary() | |
--> 427 self._initialize(args, kwds, add_initializers_to=initializer_map) | |
428 if self._created_variables: | |
429 try: | |
/usr/local/Cellar/python3/3.6.4_2/Frameworks/Python.framework/Versions/3.6/lib/python3.6/site-packages/tensorflow_core/python/eager/def_function.py in _initialize(self, args, kwds, add_initializers_to) | |
368 self._concrete_stateful_fn = ( | |
369 self._stateful_fn._get_concrete_function_internal_garbage_collected( # pylint: disable=protected-access | |
--> 370 *args, **kwds)) | |
371 | |
372 def invalid_creator_scope(*unused_args, **unused_kwds): | |
/usr/local/Cellar/python3/3.6.4_2/Frameworks/Python.framework/Versions/3.6/lib/python3.6/site-packages/tensorflow_core/python/eager/function.py in _get_concrete_function_internal_garbage_collected(self, *args, **kwargs) | |
1845 if self.input_signature: | |
1846 args, kwargs = None, None | |
-> 1847 graph_function, _, _ = self._maybe_define_function(args, kwargs) | |
1848 return graph_function | |
1849 | |
/usr/local/Cellar/python3/3.6.4_2/Frameworks/Python.framework/Versions/3.6/lib/python3.6/site-packages/tensorflow_core/python/eager/function.py in _maybe_define_function(self, args, kwargs) | |
2145 graph_function = self._function_cache.primary.get(cache_key, None) | |
2146 if graph_function is None: | |
-> 2147 graph_function = self._create_graph_function(args, kwargs) | |
2148 self._function_cache.primary[cache_key] = graph_function | |
2149 return graph_function, args, kwargs | |
/usr/local/Cellar/python3/3.6.4_2/Frameworks/Python.framework/Versions/3.6/lib/python3.6/site-packages/tensorflow_core/python/eager/function.py in _create_graph_function(self, args, kwargs, override_flat_arg_shapes) | |
2036 arg_names=arg_names, | |
2037 override_flat_arg_shapes=override_flat_arg_shapes, | |
-> 2038 capture_by_value=self._capture_by_value), | |
2039 self._function_attributes, | |
2040 # Tell the ConcreteFunction to clean up its graph once it goes out of | |
/usr/local/Cellar/python3/3.6.4_2/Frameworks/Python.framework/Versions/3.6/lib/python3.6/site-packages/tensorflow_core/python/framework/func_graph.py in func_graph_from_py_func(name, python_func, args, kwargs, signature, func_graph, autograph, autograph_options, add_control_dependencies, arg_names, op_return_value, collections, capture_by_value, override_flat_arg_shapes) | |
913 converted_func) | |
914 | |
--> 915 func_outputs = python_func(*func_args, **func_kwargs) | |
916 | |
917 # invariant: `func_outputs` contains only Tensors, CompositeTensors, | |
/usr/local/Cellar/python3/3.6.4_2/Frameworks/Python.framework/Versions/3.6/lib/python3.6/site-packages/tensorflow_core/python/eager/def_function.py in wrapped_fn(*args, **kwds) | |
318 # __wrapped__ allows AutoGraph to swap in a converted function. We give | |
319 # the function a weak reference to itself to avoid a reference cycle. | |
--> 320 return weak_wrapped_fn().__wrapped__(*args, **kwds) | |
321 weak_wrapped_fn = weakref.ref(wrapped_fn) | |
322 | |
/usr/local/Cellar/python3/3.6.4_2/Frameworks/Python.framework/Versions/3.6/lib/python3.6/site-packages/tensorflow_core/python/keras/engine/training_v2_utils.py in distributed_function(input_iterator) | |
64 """A single step of the distributed execution across replicas.""" | |
65 x, y, sample_weights = _prepare_feed_values( | |
---> 66 model, input_iterator, mode) | |
67 # Call `Model.{train,test,predict}_on_batch` on every replica passing | |
68 # PerReplicas as arguments. On every replica inside this call, each | |
/usr/local/Cellar/python3/3.6.4_2/Frameworks/Python.framework/Versions/3.6/lib/python3.6/site-packages/tensorflow_core/python/keras/engine/training_v2_utils.py in _prepare_feed_values(model, inputs, mode) | |
110 for inputs will always be wrapped in lists. | |
111 """ | |
--> 112 inputs, targets, sample_weights = _get_input_from_iterator(inputs) | |
113 | |
114 # When the inputs are dict, then we want to flatten it in the same order as | |
/usr/local/Cellar/python3/3.6.4_2/Frameworks/Python.framework/Versions/3.6/lib/python3.6/site-packages/tensorflow_core/python/keras/engine/training_v2_utils.py in _get_input_from_iterator(iterator) | |
147 # Validate that all the elements in x and y are of the same type and shape. | |
148 dist_utils.validate_distributed_dataset_inputs( | |
--> 149 distribution_strategy_context.get_strategy(), x, y, sample_weights) | |
150 return x, y, sample_weights | |
151 | |
/usr/local/Cellar/python3/3.6.4_2/Frameworks/Python.framework/Versions/3.6/lib/python3.6/site-packages/tensorflow_core/python/keras/distribute/distributed_training_utils.py in validate_distributed_dataset_inputs(distribution_strategy, x, y, sample_weights) | |
306 # If each element of x and y are not tensors, we cannot standardize and | |
307 # validate the input and targets. | |
--> 308 x_values_list = validate_per_replica_inputs(distribution_strategy, x) | |
309 | |
310 if y is not None: | |
/usr/local/Cellar/python3/3.6.4_2/Frameworks/Python.framework/Versions/3.6/lib/python3.6/site-packages/tensorflow_core/python/keras/distribute/distributed_training_utils.py in validate_per_replica_inputs(distribution_strategy, x) | |
354 if not context.executing_eagerly(): | |
355 # Validate that the shape and dtype of all the elements in x are the same. | |
--> 356 validate_all_tensor_shapes(x, x_values) | |
357 validate_all_tensor_types(x, x_values) | |
358 | |
/usr/local/Cellar/python3/3.6.4_2/Frameworks/Python.framework/Versions/3.6/lib/python3.6/site-packages/tensorflow_core/python/keras/distribute/distributed_training_utils.py in validate_all_tensor_shapes(x, x_values) | |
371 def validate_all_tensor_shapes(x, x_values): | |
372 # Validate that the shape of all the elements in x have the same shape | |
--> 373 x_shape = x_values[0].shape.as_list() | |
374 for i in range(1, len(x_values)): | |
375 if x_shape != x_values[i].shape.as_list(): | |
/usr/local/Cellar/python3/3.6.4_2/Frameworks/Python.framework/Versions/3.6/lib/python3.6/site-packages/tensorflow_core/python/framework/tensor_shape.py in as_list(self) | |
1169 """ | |
1170 if self._dims is None: | |
-> 1171 raise ValueError("as_list() is not defined on an unknown TensorShape.") | |
1172 return [dim.value for dim in self._dims] | |
1173 | |
ValueError: as_list() is not defined on an unknown TensorShape. |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment