Created
May 11, 2019 23:47
-
-
Save matthewchung74/7fc13973029c0ea7caaac9cf3325149b to your computer and use it in GitHub Desktop.
Mac ML demo
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
import os | |
import zipfile | |
import image | |
import numpy as np | |
os.environ["KERAS_BACKEND"] = "plaidml.keras.backend" | |
import keras | |
import keras.applications as kapp | |
from keras.preprocessing import image | |
local_zip = '/tmp/cats_and_dogs_filtered.zip' | |
zip_ref = zipfile.ZipFile(local_zip, 'r') | |
zip_ref.extractall('/tmp') | |
zip_ref.close() | |
base_dir = '/tmp/cats_and_dogs_filtered' | |
train_dir = os.path.join(base_dir, 'train') | |
validation_dir = os.path.join(base_dir, 'validation') | |
# Directory with our training cat/dog pictures | |
train_cats_dir = os.path.join(train_dir, 'cats') | |
train_dogs_dir = os.path.join(train_dir, 'dogs') | |
# Directory with our validation cat/dog pictures | |
validation_cats_dir = os.path.join(validation_dir, 'cats') | |
validation_dogs_dir = os.path.join(validation_dir, 'dogs') | |
train_cat_fnames = os.listdir( train_cats_dir ) | |
train_dog_fnames = os.listdir( train_dogs_dir ) | |
print(train_cat_fnames[:10]) | |
print(train_dog_fnames[:10]) | |
print('total training cat images :', len(os.listdir( train_cats_dir ) )) | |
print('total training dog images :', len(os.listdir( train_dogs_dir ) )) | |
print('total validation cat images :', len(os.listdir( validation_cats_dir ) )) | |
print('total validation dog images :', len(os.listdir( validation_dogs_dir ) )) | |
import matplotlib.image as mpimg | |
import matplotlib.pyplot as plt | |
# Parameters for our graph; we'll output images in a 4x4 configuration | |
nrows = 4 | |
ncols = 4 | |
pic_index = 0 # Index for iterating over images | |
fig = plt.gcf() | |
fig.set_size_inches(ncols*4, nrows*4) | |
pic_index+=8 | |
next_cat_pix = [os.path.join(train_cats_dir, fname) | |
for fname in train_cat_fnames[ pic_index-8:pic_index] | |
] | |
next_dog_pix = [os.path.join(train_dogs_dir, fname) | |
for fname in train_dog_fnames[ pic_index-8:pic_index] | |
] | |
for i, img_path in enumerate(next_cat_pix+next_dog_pix): | |
# Set up subplot; subplot indices start at 1 | |
sp = plt.subplot(nrows, ncols, i + 1) | |
sp.axis('Off') # Don't show axes (or gridlines) | |
sp.set_title(os.path.basename(img_path)) | |
img = mpimg.imread(img_path) | |
plt.imshow(img) | |
# plt.show() | |
model = None | |
try: | |
model = keras.models.load_model('model.h5') | |
except: | |
print('file not found, creating model') | |
if not model: | |
model = keras.models.Sequential([ | |
# Note the input shape is the desired size of the image 150x150 with 3 bytes color | |
keras.layers.Conv2D(16, (3,3), activation='relu', input_shape=(150, 150, 3)), | |
keras.layers.MaxPooling2D(2,2), | |
keras.layers.Conv2D(32, (3,3), activation='relu'), | |
keras.layers.MaxPooling2D(2,2), | |
keras.layers.Conv2D(64, (3,3), activation='relu'), | |
keras.layers.MaxPooling2D(2,2), | |
# Flatten the results to feed into a DNN | |
keras.layers.Flatten(), | |
# 512 neuron hidden layer | |
keras.layers.Dense(512, activation='relu'), | |
# Only 1 output neuron. It will contain a value from 0-1 where 0 for 1 class ('cats') and 1 for the other ('dogs') | |
keras.layers.Dense(1, activation='sigmoid') | |
]) | |
model.summary() | |
from keras.optimizers import RMSprop | |
model.compile(optimizer=RMSprop(lr=0.001), | |
loss='binary_crossentropy', | |
metrics = ['acc']) | |
from keras.preprocessing.image import ImageDataGenerator | |
# All images will be rescaled by 1./255. | |
train_datagen = ImageDataGenerator( rescale = 1.0/255. ) | |
test_datagen = ImageDataGenerator( rescale = 1.0/255. ) | |
# -------------------- | |
# Flow training images in batches of 20 using train_datagen generator | |
# -------------------- | |
train_generator = train_datagen.flow_from_directory(train_dir, | |
batch_size=20, | |
class_mode='binary', | |
target_size=(150, 150)) | |
# -------------------- | |
# Flow validation images in batches of 20 using test_datagen generator | |
# -------------------- | |
validation_generator = test_datagen.flow_from_directory(validation_dir, | |
batch_size=20, | |
class_mode = 'binary', | |
target_size = (150, 150)) | |
history = model.fit_generator(train_generator, | |
validation_data=validation_generator, | |
steps_per_epoch=100, | |
epochs=15, | |
validation_steps=50, | |
verbose=2) | |
img_path = "cat.jpg" | |
img = image.load_img(img_path, target_size=(150, 150)) | |
x=image.img_to_array(img) | |
x=np.expand_dims(x, axis=0) | |
images = np.vstack([x])classes = model.predict(images, batch_size=1) | |
print(classes[0]) | |
if classes[0]>0: | |
print("is a dog") | |
else: | |
print("is a cat") | |
print(keras.__version__) |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment