Last active
October 29, 2020 03:42
-
-
Save matthewfeickert/e34dac35ff72c4a98d71980041a83fb4 to your computer and use it in GitHub Desktop.
David Rousso toys notebook converted to script
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
import numpy as np | |
import pyhf | |
stopRHadron_spec = { | |
'channels': [ | |
{ | |
'name': 'channel1', | |
'samples': [ | |
{ | |
'data': [1.364790054231882], | |
'modifiers': [ | |
{'data': None, 'name': 'lumi', 'type': 'lumi'}, | |
{'data': None, 'name': 'mu_Sig', 'type': 'normfactor'}, | |
{ | |
'data': {'hi': 1.228925751097454, 'lo': 0.7710742489025461}, | |
'name': 'ucs_StopRHadron_1100_100000', | |
'type': 'normsys', | |
}, | |
], | |
'name': 'StopRHadron_1100_100000', | |
}, | |
{ | |
'data': [0.43], | |
'modifiers': [ | |
{ | |
'data': [0.16], | |
'name': 'staterror_channel1', | |
'type': 'staterror', | |
} | |
], | |
'name': 'Bkg', | |
}, | |
], | |
} | |
], | |
'measurements': [ | |
{ | |
'config': { | |
'parameters': [ | |
{ | |
'auxdata': [1.0], | |
'bounds': [[0.5, 1.5]], | |
'inits': [1.0], | |
'name': 'lumi', | |
'sigmas': [0.017], | |
} | |
], | |
'poi': 'mu_Sig', | |
}, | |
'name': 'meas', | |
} | |
], | |
'observations': [{'data': [0.0], 'name': 'channel1'}], | |
'version': '1.0.0', | |
} | |
def main(): | |
pyhf.set_backend("jax") | |
workspace = pyhf.Workspace(stopRHadron_spec) | |
model = workspace.model() | |
observations = [0] | |
data = observations + model.config.auxdata | |
print(f"data: {data}") | |
test_poi = 1.0 | |
print("# Asymptotics\n") | |
cls_obs, cls_exp = pyhf.infer.hypotest( | |
test_poi, data, model, return_expected_set=True, calctype="asymptotics" | |
) | |
print(f"cls_obs: {cls_obs}") | |
print(f"cls_exp: {cls_exp}") | |
n_toys = 10000 | |
print("\n# Toys") | |
cls_obs, cls_exp = pyhf.infer.hypotest( | |
test_poi, | |
data, | |
model, | |
return_expected_set=True, | |
calctype="toybased", | |
ntoys=n_toys, | |
) | |
print(f"\ncls_obs: {cls_obs}") | |
print(f"cls_exp: {cls_exp}") | |
if __name__ == '__main__': | |
main() |
Note: very small numbers so asymptotics may not set in yet.
The systematic variations ucs_StopRHadron_1100_100000
are both less than the nominal, which may cause some strange behavior.
Is there a nice way to plot a histogram of the test statistic?
Is there a nice way to plot the values of the parameters being used to generate the toys (vs. mu)?
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment
Running this produces the following output