- heatmap transform single array only
- heatmap transform with color scale
- heatmap transform with color scale and axis
- heatmap transform double array faceted with color scale and axis
- heatmap transform single array with non-zero x and y scale
- heatmap transform double array with non-zero x and y scale
Note: in the specs below, I've reduced the length of the grid values. In the accompanying Vega-Editor links are all values of the grids.
Let's start with a basic example in numpy.
import numpy as np
import matplotlib.pyplot as plt
from skimage import data
from skimage.transform import rescale
import pyperclip
array = data.camera()
array_small = rescale(array, 0.245, anti_aliasing=False)
array_round = (array_small * 255).astype(np.uint8)
plt.imshow(array_round, cmap='gray')
print('shape', array_round.shape)
array_as_flatlist = array_round.flatten(order='C').tolist() # row-major
print('head', array_as_flatlist[0:5])
pyperclip.copy(str(array_as_flatlist))
We can make it work using the heatmap
transform in Vega, using the following specification (Vega-Editor):
{
"$schema": "https://vega.github.io/schema/vega/v5.json",
"data": [
{
"name": "GRID_ARRAY",
"values": [
{
"width": 125,
"height": 125,
"values": [199, 200, 200, 198, 198, 118, 135, 161, 161, 140]
}
]
},
{
"name": "GRID_IMAGE",
"source": "GRID_ARRAY",
"transform": [{"type": "heatmap"}]
}
],
"marks": [
{
"type": "image",
"from": {"data": "GRID_IMAGE"},
"encode": {
"update": {
"x": {"value": 0},
"y": {"value": 0},
"image": {"field": "image"},
"width": {"signal": "datum.width"},
"height": {"signal": "datum.height"}
}
}
}
]
}
The result looks like this:
It seems this is the image drawn with opacity levels only.
Let's add a color scale (Vega-Editor):
{
"$schema": "https://vega.github.io/schema/vega/v5.json",
"data": [
{
"name": "GRID_ARRAY",
"values": [
{
"width": 125,
"height": 125,
"values": [199, 200, 200, 198, 198, 130, 118, 135, 161, 161, 140]
}
]
},
{
"name": "GRID_IMAGE",
"source": "GRID_ARRAY",
"transform": [
{
"type": "heatmap",
"color": {"expr": "scale('COLOR_SCALE', datum.$value / datum.$max)"},
"opacity": 1
}
]
}
],
"scales": [
{
"name": "COLOR_SCALE",
"type": "linear",
"zero": true,
"domain": [0, 1],
"range": {"scheme": "viridis"}
}
],
"marks": [
{
"type": "image",
"from": {"data": "GRID_IMAGE"},
"encode": {
"update": {
"x": {"value": 0},
"y": {"value": 0},
"image": {"field": "image"},
"width": {"signal": "datum.width"},
"height": {"signal": "datum.height"}
}
}
}
]
}
The result will look like this:
Using this approach, I also can reproduce the grayscale image like in python using plt.imshow()
.
By modifying the color scale as such (Vega-Editor):
{
"name": "COLOR_SCALE",
"type": "linear",
"zero": true,
"domain": [0, 1],
"range": {"scheme": "greys"},
"reverse": true
}
Next step is to add axis to the image. The Vega specification now looks as such (Vega-Editor):
{
"$schema": "https://vega.github.io/schema/vega/v5.json",
"width": 250,
"height": 250,
"data": [
{
"name": "GRID_ARRAY",
"values": [
{
"width": 125,
"height": 125,
"values": [199, 200, 200, 198, 198, 118, 135, 161, 161, 140]
}
]
},
{
"name": "GRID_IMAGE",
"source": "GRID_ARRAY",
"transform": [
{
"type": "heatmap",
"color": {"expr": "scale('COLOR_SCALE', datum.$value / datum.$max)"},
"opacity": 1
}
]
}
],
"scales": [
{
"name": "COLOR_SCALE",
"type": "linear",
"zero": true,
"domain": [0, 1],
"range": {"scheme": "viridis"}
},
{
"name": "X_SCALE",
"type": "linear",
"zero": true,
"domain": [0, 125],
"range": "width"
},
{
"name": "Y_SCALE",
"type": "linear",
"zero": true,
"domain": [0, 125],
"range": "height"
}
],
"axes": [
{
"scale": "X_SCALE",
"domain": false,
"orient": "bottom",
"tickCount": 5,
"labelFlush": true
},
{
"scale": "Y_SCALE",
"domain": false,
"orient": "left",
"titlePadding": 5,
"offset": 2
}
],
"marks": [
{
"type": "image",
"from": {"data": "GRID_IMAGE"},
"encode": {
"update": {
"x": {"value": 0},
"y": {"value": 0},
"image": {"field": "image"},
"width": {"signal": "width"},
"height": {"signal": "height"}
}
}
}
]
}
So far so good.
Are we able to facet grids, if we have for example two grids as input?
I've adapted my python code to prepare the data arrays:
import numpy as np
from skimage import data
from skimage import color
from skimage.transform import rescale
import pyperclip
import json
def array2vega(array):
grid = {
'height': array.shape[0],
'width': array.shape[1],
'values': array.flatten(order='C').tolist() # row-major
}
return grid
array = data.camera()
array_small = rescale(array, 0.245, anti_aliasing=False)
array_round = np.round(array_small, 2)
grid0 = array2vega(array_round)
grid1 = array2vega(1 - array_round)
arrays = [{'grid':grid0, 'variant': 'A'}, {'grid':grid1, 'variant': 'B'}]
pyperclip.copy(json.dumps(arrays))
And modified the Vega specification. This now looks as such (Vega-Editor):
{
"$schema": "https://vega.github.io/schema/vega/v5.json",
"width": 250,
"height": 250,
"data": [
{
"name": "GRID_ARRAY",
"values": [{"grid": {"width": 125, "height": 125, "values": [0.78, 0.78, 0.78, 0.78, 0.78, 0.46, 0.53, 0.63, 0.63, 0.55]}, "variant": "A"}, {"grid": {"width": 125, "height": 125, "values": [0.21999999999999997, 0.21999999999999997, 0.21999999999999997, 0.21999999999999997, 0.21999999999999997, 0.54, 0.47, 0.37, 0.37, 0.44999999999999996]}, "variant": "B"}]
},
{
"name": "GRID_IMAGE",
"source": "GRID_ARRAY",
"transform": [
{
"type": "heatmap",
"field": "grid",
"color": {"expr": "scale('COLOR_SCALE', datum.$value / datum.$max)"},
"opacity": 1
}
]
}
],
"scales": [
{
"name": "COLOR_SCALE",
"type": "linear",
"zero": true,
"domain": [0, 1],
"range": {"scheme": "viridis"}
},
{
"name": "X_SCALE",
"type": "linear",
"zero": true,
"domain": [0, 125],
"range": "width"
},
{
"name": "Y_SCALE",
"type": "linear",
"zero": true,
"domain": [0, 125],
"range": "height"
}
],
"axes": [
{
"scale": "Y_SCALE",
"domain": false,
"orient": "left",
"offset": 2
}
],
"layout": {
"columns": 2
},
"marks": [
{
"type": "group",
"from": {
"facet": {
"name": "facet",
"data": "GRID_IMAGE",
"groupby": "variant"
}
},
"title": {
"text": {"signal": "parent.variant"}
},
"encode": {
"update": {
"width": {"signal": "width"},
"height": {"signal": "height"}
}
},
"axes": [
{
"scale": "X_SCALE",
"domain": false,
"orient": "bottom"
}
],
"marks": [
{
"type": "image",
"from": {"data": "facet"},
"encode": {
"update": {
"x": {"value": 0},
"y": {"value": 0},
"image": {"field": "image"},
"width": {"signal": "width"},
"height": {"signal": "height"}
}
}
}
]
}
]
}
Not bad!
This variant is still a bit difficult. The array is in unit degrees and goes on the x-axis from -180
to 180
longitude and on the y-axis from -81
to 87
latitude. The step-size is 1 degrees in both directions.
See Vega-Editor:
{
"$schema": "https://vega.github.io/schema/vega/v5.json",
"width": 360,
"height": 168,
"data": [
{
"name": "GRID_ARRAY",
"values": [{
"year":2016,
"grid":{
"x1_":-180,
"x2_":180,
"y1_":-81,
"y2_":87,
"height":168,
"width":360,
"values":[392,392,392,392,393,166,163,165,168,169]
}
}]
},
{
"name": "GRID_IMAGE",
"source": "GRID_ARRAY",
"transform": [
{
"type": "heatmap",
"field": "grid",
"color": {"expr": "scale('COLOR_SCALE', datum.$value / datum.$max)"},
"opacity": 1
}
]
}
],
"scales": [
{
"name": "COLOR_SCALE",
"type": "linear",
"zero": true,
"domain": [0, 1],
"range": {"scheme": "viridis"}
},
{
"name": "X_SCALE",
"type": "linear",
"zero": false,
"domain": [-180, 180],
"range": "width"
},
{
"name": "Y_SCALE",
"type": "linear",
"zero": false,
"domain": [-81, 87],
"range": "height"
}
],
"axes": [
{
"scale": "X_SCALE",
"domain": false,
"orient": "bottom"
},
{
"scale": "Y_SCALE",
"domain": false,
"orient": "left",
"titlePadding": 5,
"offset": 2
}
],
"marks": [
{
"type": "image",
"from": {"data": "GRID_IMAGE"},
"encode": {
"update": {
"x": {"value": 0},
"y": {"value": 0},
"image": {"field": "image"},
"width": {"signal": "datum.grid.width"},
"height": {"signal": "datum.grid.height"}
}
}
}
]
}
This results in:
Basically, for the grid only use the height
and width
to allocate the canvas size and iterate over the 1D array to colorize each pixel.
For the X_SCALE
and Y_SCALE
we use the information of x1
/x2
and y1
/y2
(still manually). We use the "datum.grid.width"
and "datum.grid.height"
as signal
for within the image mark encoding. Since the scales also need a width and height, the global width
/height
are currently still set to the same witdth and height of the grid.
But if I change the grid input object to:
"x1":-180,
"x2":180,
"y1":-81,
"y2":87,
"height":168,
"width":360,
(removing the appended _
from x1
/x2
/y1
/y2
)
The result is this:
I've the feeling all negative values of our scales malfunction in the iterator within heatmap.js (here). But then it seems the drawn y-axis is reversed for the canvas iterator. If I add a "reverse":true
to the scale Y_SCALE
then it becomes more clear that only positive values are colorized in the canvas:
But then the latitude values on the y-axis does not match the input array.
Lets make it a bit more complex. A facetted chart with non-zero x and y scales. Lets start with data preparation in python:
import numpy as np
import pandas as pd
from matplotlib import pyplot as plt
import pyperclip
import urllib.request
import json
import numpy as np
import pandas as pd
from matplotlib import pyplot as plt
import pyperclip
# define data
source = 'https://raw.githubusercontent.com/vega/vega-datasets/main/data/annual-precip.json'
with urllib.request.urlopen(source) as url:
data = json.load(url)
values = data['values']
width = data['width'] # 360
height = data['height'] # 168
extent = [-180, 180, -81, 87] # xmin, xmax, ymin, ymax
# prepare array and plot
array = np.array(values).reshape(height, width)
plt.imshow(array, extent=extent)
def array2vega(array, extent):
grid = {
'extent': extent,
'height': array.shape[0],
'width': array.shape[1],
'values': array.flatten(order='C').tolist() # row-major
}
return grid
grid0 = array2vega(array, extent)
grid1 = array2vega(1 - array, extent)
arrays = [{'grid': grid0, 'variant': 'A'}, {'grid': grid1, 'variant': 'B'}]
df = pd.DataFrame.from_dict(arrays)
# copy and display
pyperclip.copy(df.to_json(orient='records'))
df
When prepararing a vega chart for this as such, See Vega-Editor:
{
"$schema": "https://vega.github.io/schema/vega/v5.json",
"width": 250,
"height": 250,
"data": [
{
"name": "GRID_ARRAY",
"values": [
{
"grid": {
"extent": [-180, 180, -81, 87],
"height": 168,
"width": 360,
"values": [392, 392, 392, 169, 187, 196]
},
"variant": "A"
},
{
"grid": {
"extent": [-180, 180, -81, 87],
"height": 168,
"width": 360,
"values": [-391, -391, -391, -164, -167, -168]
},
"variant": "B"
}
]
},
{
"name": "GRID_IMAGE",
"source": "GRID_ARRAY",
"transform": [
{
"type": "heatmap",
"field": "grid",
"color": {"expr": "scale('COLOR_SCALE', datum.$value / datum.$max)"},
"opacity": 1
}
]
}
],
"scales": [
{
"name": "COLOR_SCALE",
"type": "linear",
"zero": true,
"domain": [0, 1],
"range": {"scheme": "viridis"}
},
{
"name": "X_SCALE",
"type": "linear",
"zero": true,
"domain": [-180, 180],
"range": "width"
},
{
"name": "Y_SCALE",
"type": "linear",
"zero": true,
"domain": [-81, 87],
"range": "height"
}
],
"axes": [
{"scale": "Y_SCALE", "domain": false, "orient": "left", "offset": 2}
],
"layout": {"columns": 2},
"marks": [
{
"type": "group",
"from": {
"facet": {"name": "facet", "data": "GRID_IMAGE", "groupby": "variant"}
},
"title": {"text": {"signal": "parent.variant"}},
"encode": {
"update": {"width": {"signal": "width"}, "height": {"signal": "height"}}
},
"axes": [{"scale": "X_SCALE", "domain": false, "orient": "bottom"}],
"marks": [
{
"type": "image",
"from": {"data": "facet"},
"encode": {
"update": {
"x": {"value": 0},
"y": {"value": 0},
"image": {"field": "image"},
"width": {"signal": "datum.grid.width"},
"height": {"signal": "datum.grid.height"}
}
}
}
]
}
]
}
Two issues become clear from this:
- We see the interference of a global-defined
width
andheight
and the array-definedgrid.width
andgrid.height
. - Another issue that becomes apparent is that currently the color scale is not applied independent.
nice!