Skip to content

Instantly share code, notes, and snippets.

View mattleblanc's full-sized avatar
🎉
"if you ain't boostin', you ain't livin'"

Matt LeBlanc mattleblanc

🎉
"if you ain't boostin', you ain't livin'"
View GitHub Profile
// main92.cc is a part of the PYTHIA event generator.
// Copyright (C) 2021 Torbjorn Sjostrand.
// PYTHIA is licenced under the GNU GPL v2 or later, see COPYING for details.
// Please respect the MCnet Guidelines, see GUIDELINES for details.
// Keywords: analysis; root;
// This is a simple test program.
// Modified by Rene Brun and Axel Naumann to put the Pythia::event
// into a TTree.
#! /usr/bin/python
import os
PDFs = '2' # 3 for LO and NLO, 2 for NNLO
how_long = '600' # how long to run, in seconds
base_seed = 400000000 # base seed: 4E8 for MLB
idx = 0 # the index to start from
n_to_run = 2
@mattleblanc
mattleblanc / python-config
Created March 17, 2021 21:57
python-config
#!/usr/bin/env python3
"""
This python-config script was taken from a virtual environment
created by `virtualenv`.
The only change is the hash-bang line.
The user shall copy this to ${VENV}/bin during setup.
:author: unknown + AA
:date: 2018-02-23
"""
import ROOT
from ROOT import gROOT,gPad,gStyle,TCanvas,TFile,TLine,TLatex,TAxis,TLegend,TPostScript
import os
global canvas, canvas
ROOT.gROOT.SetBatch(True)
ROOT.gStyle.SetOptStat(False)
ROOT.gStyle.SetOptTitle(False)
# standard library imports
from __future__ import absolute_import, division, print_function
# standard numerical library imports
import numpy as np
# matplotlib is required for this example
import matplotlib.pyplot as plt
# matplotlib inline
'''
xAH_LundAnalysis.py
An xAODAnaHelpers config to run studies on the jet Lund Plane, for HCW 2018.
Matt LeBlanc (Arizona), [email protected]
Cluster-level systematics tool implemented by J. Roloff (Harvard)
(link)
Original Lund Plane code from F. Dreyer
https://github.com/rappoccio/fastjet-tutorial
# standard library imports
from __future__ import absolute_import, division, print_function
# standard numerical library imports
import numpy as np
from numpy import stack, vstack, hstack, hsplit
import matplotlib.pyplot as plt
import math
[[ 1.0779756e-01 -1.5096217e+00 8.2120484e-01]
[ 6.4470631e-01 -1.2379662e+00 6.7307860e-01]
[ 1.0247824e+00 -1.4674745e+00 9.3655944e-01]
[ 9.0748066e-01 -1.0875183e+00 7.4759513e-01]
[ 2.8884621e+00 -1.1018797e+00 9.3668556e-01]
[ 8.1364784e+00 -1.2544842e+00 8.5104781e-01]
[ 3.3919575e+00 -1.1915125e+00 9.4713718e-01]
[ 2.9960896e+01 -1.2121054e+00 9.4920963e-01]
[ 1.2441242e+01 -1.2245705e+00 8.8597697e-01]
[ 5.7293983e+00 -1.2214684e+00 8.9757460e-01]
import uproot
import h5py
import numpy as np
from tempfile import mkdtemp
import os
import argparse
# if we want multiple custom formatters, use inheriting
class CustomFormatter(argparse.ArgumentDefaultsHelpFormatter):
http://atlas-computing.web.cern.ch/atlas-computing/links/nightlyDocDirectory/EventInfo_p4/html/
EventInfo_p4
| EventInfo_p4* ByteStreamEventInfo
--------------------
http://atlas-computing.web.cern.ch/atlas-computing/links/nightlyDocDirectory/xAODBTagging/html/
xAOD::BTaggingContainer
| xAOD::BTaggingContainer* BTagging_AntiKt2Track
| | &->getAttribute<vector<ElementLink<DataVector<xAOD::TrackParticle> > >>("BTagTrackToJetAssociator")
| | &->getAttribute<vector<ElementLink<DataVector<xAOD::TrackParticle> > >>("BTagTrackToJetAssociatorBB")