Created
January 14, 2014 01:19
-
-
Save mauropm/8411347 to your computer and use it in GitHub Desktop.
A sample of ciphering text using a modulus found in the PEM file, based on Tom Wu's code/sample: http://www-cs-students.stanford.edu/~tjw/jsbn/
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
// PEM encryption is possible! I found a JS work by Tom Wu, that you can see here: | |
// http://www-cs-students.stanford.edu/~tjw/jsbn/ | |
// This code attempts to adapt his sample/test code and how to use it in Titanium Appcelerator. | |
Ti.include("jsbn.js"); | |
Ti.include("prng4.js"); | |
Ti.include("rng.js"); | |
Ti.include("rsa.js"); | |
Ti.include("base64.js"); | |
var win = Ti.UI.createWindow({ | |
backgroundColor : 'white', | |
}); | |
var tf = Ti.UI.createTextField({ | |
top : 10, | |
left : 10, | |
width: 100, | |
height:30, | |
}); | |
var button = Ti.UI.createButton({ | |
top : 40, | |
left : 40, | |
title : "Cipher this!", | |
}); | |
win.add(tf); | |
win.add(button); | |
//e will be the public exponent hex, F4=0x10001 | |
var e = "10001"; | |
// n will be the modulus (that you can get from your PEM file) | |
// Instructions about getting the modulus from your PEM file here: http://www-cs-students.stanford.edu/~tjw/jsbn/ | |
var n = "a5261939975948bb7a58dffe5ff54e65f0498f9175f5a09288810b8975871e99\naf3b5dd94057b0fc07535f5f97444504fa35169d461d0d30cf0192e307727c06\n5168c788771c561a9400fb49175e9e6aa4e23fe11af69e9412dd23b0cb6684c4\nc2429bce139e848ab26d0829073351f4acd36074eafd036a5eb83359d2a698d3"; | |
var plaintext = tf.value; | |
var ciphertext = ""; | |
var time; | |
var before = new Date(); | |
var rsa = new RSAKey(); | |
rsa.setPublic(n, e); | |
button.addEventListener("click", function() { | |
Ti.API.info("Before Ciphering:"); | |
Ti.API.info(plaintext); | |
var res = rsa.encrypt(plaintext); | |
Ti.API.info("Ciphertext:"); | |
Ti.API.info(linebrk(res, 64)); | |
var after = new Date(); | |
if (res) { | |
ciphertext = linebrk(res, 64); | |
time = "Time: " + (after - before) + "ms"; | |
alert("Ciphertext:" + ciphertext + "\n Time: " + time); | |
} else { | |
alert("Failed to cipher!"); | |
} | |
}); | |
win.open(); |
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
var b64map="ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz0123456789+/"; | |
var b64padchar="="; | |
function hex2b64(h) { | |
var i; | |
var c; | |
var ret = ""; | |
for(i = 0; i+3 <= h.length; i+=3) { | |
c = parseInt(h.substring(i,i+3),16); | |
ret += b64map.charAt(c >> 6) + b64map.charAt(c & 63); | |
} | |
if(i+1 == h.length) { | |
c = parseInt(h.substring(i,i+1),16); | |
ret += b64map.charAt(c << 2); | |
} | |
else if(i+2 == h.length) { | |
c = parseInt(h.substring(i,i+2),16); | |
ret += b64map.charAt(c >> 2) + b64map.charAt((c & 3) << 4); | |
} | |
while((ret.length & 3) > 0) ret += b64padchar; | |
return ret; | |
} | |
// convert a base64 string to hex | |
function b64tohex(s) { | |
var ret = ""; | |
var i; | |
var k = 0; // b64 state, 0-3 | |
var slop; | |
for(i = 0; i < s.length; ++i) { | |
if(s.charAt(i) == b64padchar) break; | |
v = b64map.indexOf(s.charAt(i)); | |
if(v < 0) continue; | |
if(k == 0) { | |
ret += int2char(v >> 2); | |
slop = v & 3; | |
k = 1; | |
} | |
else if(k == 1) { | |
ret += int2char((slop << 2) | (v >> 4)); | |
slop = v & 0xf; | |
k = 2; | |
} | |
else if(k == 2) { | |
ret += int2char(slop); | |
ret += int2char(v >> 2); | |
slop = v & 3; | |
k = 3; | |
} | |
else { | |
ret += int2char((slop << 2) | (v >> 4)); | |
ret += int2char(v & 0xf); | |
k = 0; | |
} | |
} | |
if(k == 1) | |
ret += int2char(slop << 2); | |
return ret; | |
} | |
// convert a base64 string to a byte/number array | |
function b64toBA(s) { | |
//piggyback on b64tohex for now, optimize later | |
var h = b64tohex(s); | |
var i; | |
var a = new Array(); | |
for(i = 0; 2*i < h.length; ++i) { | |
a[i] = parseInt(h.substring(2*i,2*i+2),16); | |
} | |
return a; | |
} |
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
// THIS FILE WAS MODIFIED TO WORK WITH TITANIUM CHECK FOR THE TAG "TICHANGES" TO SEE WHAT CHANGED | |
// Copyright (c) 2005 Tom Wu | |
// All Rights Reserved. | |
// See "LICENSE" for details. | |
// Basic JavaScript BN library - subset useful for RSA encryption. | |
// Bits per digit | |
var dbits; | |
// JavaScript engine analysis | |
var canary = 0xdeadbeefcafe; | |
var j_lm = ((canary & 0xffffff) == 0xefcafe); | |
// (public) Constructor | |
function BigInteger(a, b, c) { | |
if (a != null) | |
if ("number" == typeof a) | |
this.fromNumber(a, b, c); | |
else if (b == null && "string" != typeof a) | |
this.fromString(a, 256); | |
else | |
this.fromString(a, b); | |
} | |
// return new, unset BigInteger | |
function nbi() { | |
return new BigInteger(null); | |
} | |
// am: Compute w_j += (x*this_i), propagate carries, | |
// c is initial carry, returns final carry. | |
// c < 3*dvalue, x < 2*dvalue, this_i < dvalue | |
// We need to select the fastest one that works in this environment. | |
// am1: use a single mult and divide to get the high bits, | |
// max digit bits should be 26 because | |
// max internal value = 2*dvalue^2-2*dvalue (< 2^53) | |
function am1(i, x, w, j, c, n) { | |
while (--n >= 0) { | |
var v = x * this[i++] + w[j] + c; | |
c = Math.floor(v / 0x4000000); | |
w[j++] = v & 0x3ffffff; | |
} | |
return c; | |
} | |
// am2 avoids a big mult-and-extract completely. | |
// Max digit bits should be <= 30 because we do bitwise ops | |
// on values up to 2*hdvalue^2-hdvalue-1 (< 2^31) | |
function am2(i, x, w, j, c, n) { | |
var xl = x & 0x7fff, xh = x >> 15; | |
while (--n >= 0) { | |
var l = this[i] & 0x7fff; | |
var h = this[i++] >> 15; | |
var m = xh * l + h * xl; | |
l = xl * l + ((m & 0x7fff) << 15) + w[j] + (c & 0x3fffffff); | |
c = (l >>> 30) + (m >>> 15) + xh * h + (c >>> 30); | |
w[j++] = l & 0x3fffffff; | |
} | |
return c; | |
} | |
// Alternately, set max digit bits to 28 since some | |
// browsers slow down when dealing with 32-bit numbers. | |
function am3(i, x, w, j, c, n) { | |
var xl = x & 0x3fff, xh = x >> 14; | |
while (--n >= 0) { | |
var l = this[i] & 0x3fff; | |
var h = this[i++] >> 14; | |
var m = xh * l + h * xl; | |
l = xl * l + ((m & 0x3fff) << 14) + w[j] + c; | |
c = (l >> 28) + (m >> 14) + xh * h; | |
w[j++] = l & 0xfffffff; | |
} | |
return c; | |
} | |
// TICHANGES | |
// This used to be different for each navigator. We don't have a navigator var, | |
// therefore we just used the Mozilla Navigator values. | |
BigInteger.prototype.am = am3; | |
dbits = 28; | |
BigInteger.prototype.DB = dbits; | |
BigInteger.prototype.DM = ((1 << dbits) - 1); | |
BigInteger.prototype.DV = (1 << dbits); | |
var BI_FP = 52; | |
BigInteger.prototype.FV = Math.pow(2, BI_FP); | |
BigInteger.prototype.F1 = BI_FP - dbits; | |
BigInteger.prototype.F2 = 2 * dbits - BI_FP; | |
// Digit conversions | |
var BI_RM = "0123456789abcdefghijklmnopqrstuvwxyz"; | |
var BI_RC = new Array(); | |
var rr, vv; | |
rr = "0".charCodeAt(0); | |
for ( vv = 0; vv <= 9; ++vv) | |
BI_RC[rr++] = vv; | |
rr = "a".charCodeAt(0); | |
for ( vv = 10; vv < 36; ++vv) | |
BI_RC[rr++] = vv; | |
rr = "A".charCodeAt(0); | |
for ( vv = 10; vv < 36; ++vv) | |
BI_RC[rr++] = vv; | |
function int2char(n) { | |
return BI_RM.charAt(n); | |
} | |
function intAt(s, i) { | |
var c = BI_RC[s.charCodeAt(i)]; | |
return (c == null) ? -1 : c; | |
} | |
// (protected) copy this to r | |
function bnpCopyTo(r) { | |
for (var i = this.t - 1; i >= 0; --i) | |
r[i] = this[i]; | |
r.t = this.t; | |
r.s = this.s; | |
} | |
// (protected) set from integer value x, -DV <= x < DV | |
function bnpFromInt(x) { | |
this.t = 1; | |
this.s = (x < 0) ? -1 : 0; | |
if (x > 0) | |
this[0] = x; | |
else if (x < -1) | |
this[0] = x + this.DV; | |
else | |
this.t = 0; | |
} | |
// return bigint initialized to value | |
function nbv(i) { | |
var r = nbi(); | |
r.fromInt(i); | |
return r; | |
} | |
// (protected) set from string and radix | |
function bnpFromString(s, b) { | |
var k; | |
if (b == 16) | |
k = 4; | |
else if (b == 8) | |
k = 3; | |
else if (b == 256) | |
k = 8; | |
// byte array | |
else if (b == 2) | |
k = 1; | |
else if (b == 32) | |
k = 5; | |
else if (b == 4) | |
k = 2; | |
else { | |
this.fromRadix(s, b); | |
return; | |
} | |
this.t = 0; | |
this.s = 0; | |
var i = s.length, mi = false, sh = 0; | |
while (--i >= 0) { | |
var x = (k == 8) ? s[i] & 0xff : intAt(s, i); | |
if (x < 0) { | |
if (s.charAt(i) == "-") | |
mi = true; | |
continue; | |
} | |
mi = false; | |
if (sh == 0) | |
this[this.t++] = x; | |
else if (sh + k > this.DB) { | |
this[this.t - 1] |= (x & ((1 << (this.DB - sh)) - 1)) << sh; | |
this[this.t++] = (x >> (this.DB - sh)); | |
} else | |
this[this.t - 1] |= x << sh; | |
sh += k; | |
if (sh >= this.DB) | |
sh -= this.DB; | |
} | |
if (k == 8 && (s[0] & 0x80) != 0) { | |
this.s = -1; | |
if (sh > 0) | |
this[this.t - 1] |= ((1 << (this.DB - sh)) - 1) << sh; | |
} | |
this.clamp(); | |
if (mi) | |
BigInteger.ZERO.subTo(this, this); | |
} | |
// (protected) clamp off excess high words | |
function bnpClamp() { | |
var c = this.s & this.DM; | |
while (this.t > 0 && this[this.t - 1] == c)--this.t; | |
} | |
// (public) return string representation in given radix | |
function bnToString(b) { | |
if (this.s < 0) | |
return "-" + this.negate().toString(b); | |
var k; | |
if (b == 16) | |
k = 4; | |
else if (b == 8) | |
k = 3; | |
else if (b == 2) | |
k = 1; | |
else if (b == 32) | |
k = 5; | |
else if (b == 4) | |
k = 2; | |
else | |
return this.toRadix(b); | |
var km = (1 << k) - 1, d, m = false, r = "", i = this.t; | |
var p = this.DB - (i * this.DB) % k; | |
if (i-- > 0) { | |
if (p < this.DB && ( d = this[i] >> p) > 0) { | |
m = true; | |
r = int2char(d); | |
} | |
while (i >= 0) { | |
if (p < k) { | |
d = (this[i] & ((1 << p) - 1)) << (k - p); | |
d |= this[--i] >> (p += this.DB - k); | |
} else { | |
d = (this[i] >> (p -= k)) & km; | |
if (p <= 0) { | |
p += this.DB; | |
--i; | |
} | |
} | |
if (d > 0) | |
m = true; | |
if (m) | |
r += int2char(d); | |
} | |
} | |
return m ? r : "0"; | |
} | |
// (public) -this | |
function bnNegate() { | |
var r = nbi(); | |
BigInteger.ZERO.subTo(this, r); | |
return r; | |
} | |
// (public) |this| | |
function bnAbs() { | |
return (this.s < 0) ? this.negate() : this; | |
} | |
// (public) return + if this > a, - if this < a, 0 if equal | |
function bnCompareTo(a) { | |
var r = this.s - a.s; | |
if (r != 0) | |
return r; | |
var i = this.t; | |
r = i - a.t; | |
if (r != 0) | |
return (this.s < 0) ? -r : r; | |
while (--i >= 0) | |
if (( r = this[i] - a[i]) != 0) | |
return r; | |
return 0; | |
} | |
// returns bit length of the integer x | |
function nbits(x) { | |
var r = 1, t; | |
if (( t = x >>> 16) != 0) { | |
x = t; | |
r += 16; | |
} | |
if (( t = x >> 8) != 0) { | |
x = t; | |
r += 8; | |
} | |
if (( t = x >> 4) != 0) { | |
x = t; | |
r += 4; | |
} | |
if (( t = x >> 2) != 0) { | |
x = t; | |
r += 2; | |
} | |
if (( t = x >> 1) != 0) { | |
x = t; | |
r += 1; | |
} | |
return r; | |
} | |
// (public) return the number of bits in "this" | |
function bnBitLength() { | |
if (this.t <= 0) | |
return 0; | |
return this.DB * (this.t - 1) + nbits(this[this.t - 1] ^ (this.s & this.DM)); | |
} | |
// (protected) r = this << n*DB | |
function bnpDLShiftTo(n, r) { | |
var i; | |
for ( i = this.t - 1; i >= 0; --i) | |
r[i + n] = this[i]; | |
for ( i = n - 1; i >= 0; --i) | |
r[i] = 0; | |
r.t = this.t + n; | |
r.s = this.s; | |
} | |
// (protected) r = this >> n*DB | |
function bnpDRShiftTo(n, r) { | |
for (var i = n; i < this.t; ++i) | |
r[i - n] = this[i]; | |
r.t = Math.max(this.t - n, 0); | |
r.s = this.s; | |
} | |
// (protected) r = this << n | |
function bnpLShiftTo(n, r) { | |
var bs = n % this.DB; | |
var cbs = this.DB - bs; | |
var bm = (1 << cbs) - 1; | |
var ds = Math.floor(n / this.DB), c = (this.s << bs) & this.DM, i; | |
for ( i = this.t - 1; i >= 0; --i) { | |
r[i + ds + 1] = (this[i] >> cbs) | c; | |
c = (this[i] & bm) << bs; | |
} | |
for ( i = ds - 1; i >= 0; --i) | |
r[i] = 0; | |
r[ds] = c; | |
r.t = this.t + ds + 1; | |
r.s = this.s; | |
r.clamp(); | |
} | |
// (protected) r = this >> n | |
function bnpRShiftTo(n, r) { | |
r.s = this.s; | |
var ds = Math.floor(n / this.DB); | |
if (ds >= this.t) { | |
r.t = 0; | |
return; | |
} | |
var bs = n % this.DB; | |
var cbs = this.DB - bs; | |
var bm = (1 << bs) - 1; | |
r[0] = this[ds] >> bs; | |
for (var i = ds + 1; i < this.t; ++i) { | |
r[i - ds - 1] |= (this[i] & bm) << cbs; | |
r[i - ds] = this[i] >> bs; | |
} | |
if (bs > 0) | |
r[this.t - ds - 1] |= (this.s & bm) << cbs; | |
r.t = this.t - ds; | |
r.clamp(); | |
} | |
// (protected) r = this - a | |
function bnpSubTo(a, r) { | |
var i = 0, c = 0, m = Math.min(a.t, this.t); | |
while (i < m) { | |
c += this[i] - a[i]; | |
r[i++] = c & this.DM; | |
c >>= this.DB; | |
} | |
if (a.t < this.t) { | |
c -= a.s; | |
while (i < this.t) { | |
c += this[i]; | |
r[i++] = c & this.DM; | |
c >>= this.DB; | |
} | |
c += this.s; | |
} else { | |
c += this.s; | |
while (i < a.t) { | |
c -= a[i]; | |
r[i++] = c & this.DM; | |
c >>= this.DB; | |
} | |
c -= a.s; | |
} | |
r.s = (c < 0) ? -1 : 0; | |
if (c < -1) | |
r[i++] = this.DV + c; | |
else if (c > 0) | |
r[i++] = c; | |
r.t = i; | |
r.clamp(); | |
} | |
// (protected) r = this * a, r != this,a (HAC 14.12) | |
// "this" should be the larger one if appropriate. | |
function bnpMultiplyTo(a, r) { | |
var x = this.abs(), y = a.abs(); | |
var i = x.t; | |
r.t = i + y.t; | |
while (--i >= 0) | |
r[i] = 0; | |
for ( i = 0; i < y.t; ++i) | |
r[i + x.t] = x.am(0, y[i], r, i, 0, x.t); | |
r.s = 0; | |
r.clamp(); | |
if (this.s != a.s) | |
BigInteger.ZERO.subTo(r, r); | |
} | |
// (protected) r = this^2, r != this (HAC 14.16) | |
function bnpSquareTo(r) { | |
var x = this.abs(); | |
var i = r.t = 2 * x.t; | |
while (--i >= 0) | |
r[i] = 0; | |
for ( i = 0; i < x.t - 1; ++i) { | |
var c = x.am(i, x[i], r, 2 * i, 0, 1); | |
if ((r[i + x.t] += x.am(i + 1, 2 * x[i], r, 2 * i + 1, c, x.t - i - 1)) >= x.DV) { | |
r[i + x.t] -= x.DV; | |
r[i + x.t + 1] = 1; | |
} | |
} | |
if (r.t > 0) | |
r[r.t - 1] += x.am(i, x[i], r, 2 * i, 0, 1); | |
r.s = 0; | |
r.clamp(); | |
} | |
// (protected) divide this by m, quotient and remainder to q, r (HAC 14.20) | |
// r != q, this != m. q or r may be null. | |
function bnpDivRemTo(m, q, r) { | |
var pm = m.abs(); | |
if (pm.t <= 0) | |
return; | |
var pt = this.abs(); | |
if (pt.t < pm.t) { | |
if (q != null) | |
q.fromInt(0); | |
if (r != null) | |
this.copyTo(r); | |
return; | |
} | |
if (r == null) | |
r = nbi(); | |
var y = nbi(), ts = this.s, ms = m.s; | |
var nsh = this.DB - nbits(pm[pm.t - 1]); | |
// normalize modulus | |
if (nsh > 0) { | |
pm.lShiftTo(nsh, y); | |
pt.lShiftTo(nsh, r); | |
} else { | |
pm.copyTo(y); | |
pt.copyTo(r); | |
} | |
var ys = y.t; | |
var y0 = y[ys - 1]; | |
if (y0 == 0) | |
return; | |
var yt = y0 * (1 << this.F1) + ((ys > 1) ? y[ys - 2] >> this.F2 : 0); | |
var d1 = this.FV / yt, d2 = (1 << this.F1) / yt, e = 1 << this.F2; | |
var i = r.t, j = i - ys, t = (q == null) ? nbi() : q; | |
y.dlShiftTo(j, t); | |
if (r.compareTo(t) >= 0) { | |
r[r.t++] = 1; | |
r.subTo(t, r); | |
} | |
BigInteger.ONE.dlShiftTo(ys, t); | |
t.subTo(y, y); | |
// "negative" y so we can replace sub with am later | |
while (y.t < ys) | |
y[y.t++] = 0; | |
while (--j >= 0) { | |
// Estimate quotient digit | |
var qd = (r[--i] == y0) ? this.DM : Math.floor(r[i] * d1 + (r[i - 1] + e) * d2); | |
if ((r[i] += y.am(0, qd, r, j, 0, ys)) < qd) {// Try it out | |
y.dlShiftTo(j, t); | |
r.subTo(t, r); | |
while (r[i] < --qd) | |
r.subTo(t, r); | |
} | |
} | |
if (q != null) { | |
r.drShiftTo(ys, q); | |
if (ts != ms) | |
BigInteger.ZERO.subTo(q, q); | |
} | |
r.t = ys; | |
r.clamp(); | |
if (nsh > 0) | |
r.rShiftTo(nsh, r); | |
// Denormalize remainder | |
if (ts < 0) | |
BigInteger.ZERO.subTo(r, r); | |
} | |
// (public) this mod a | |
function bnMod(a) { | |
var r = nbi(); | |
this.abs().divRemTo(a, null, r); | |
if (this.s < 0 && r.compareTo(BigInteger.ZERO) > 0) | |
a.subTo(r, r); | |
return r; | |
} | |
// Modular reduction using "classic" algorithm | |
function Classic(m) { | |
this.m = m; | |
} | |
function cConvert(x) { | |
if (x.s < 0 || x.compareTo(this.m) >= 0) | |
return x.mod(this.m); | |
else | |
return x; | |
} | |
function cRevert(x) { | |
return x; | |
} | |
function cReduce(x) { | |
x.divRemTo(this.m, null, x); | |
} | |
function cMulTo(x, y, r) { | |
x.multiplyTo(y, r); | |
this.reduce(r); | |
} | |
function cSqrTo(x, r) { | |
x.squareTo(r); | |
this.reduce(r); | |
} | |
Classic.prototype.convert = cConvert; | |
Classic.prototype.revert = cRevert; | |
Classic.prototype.reduce = cReduce; | |
Classic.prototype.mulTo = cMulTo; | |
Classic.prototype.sqrTo = cSqrTo; | |
// (protected) return "-1/this % 2^DB"; useful for Mont. reduction | |
// justification: | |
// xy == 1 (mod m) | |
// xy = 1+km | |
// xy(2-xy) = (1+km)(1-km) | |
// x[y(2-xy)] = 1-k^2m^2 | |
// x[y(2-xy)] == 1 (mod m^2) | |
// if y is 1/x mod m, then y(2-xy) is 1/x mod m^2 | |
// should reduce x and y(2-xy) by m^2 at each step to keep size bounded. | |
// JS multiply "overflows" differently from C/C++, so care is needed here. | |
function bnpInvDigit() { | |
if (this.t < 1) | |
return 0; | |
var x = this[0]; | |
if ((x & 1) == 0) | |
return 0; | |
var y = x & 3; | |
// y == 1/x mod 2^2 | |
y = (y * (2 - (x & 0xf) * y)) & 0xf; | |
// y == 1/x mod 2^4 | |
y = (y * (2 - (x & 0xff) * y)) & 0xff; | |
// y == 1/x mod 2^8 | |
y = (y * (2 - (((x & 0xffff) * y) & 0xffff))) & 0xffff; | |
// y == 1/x mod 2^16 | |
// last step - calculate inverse mod DV directly; | |
// assumes 16 < DB <= 32 and assumes ability to handle 48-bit ints | |
y = (y * (2 - x * y % this.DV)) % this.DV; | |
// y == 1/x mod 2^dbits | |
// we really want the negative inverse, and -DV < y < DV | |
return (y > 0) ? this.DV - y : -y; | |
} | |
// Montgomery reduction | |
function Montgomery(m) { | |
this.m = m; | |
this.mp = m.invDigit(); | |
this.mpl = this.mp & 0x7fff; | |
this.mph = this.mp >> 15; | |
this.um = (1 << (m.DB - 15)) - 1; | |
this.mt2 = 2 * m.t; | |
} | |
// xR mod m | |
function montConvert(x) { | |
var r = nbi(); | |
x.abs().dlShiftTo(this.m.t, r); | |
r.divRemTo(this.m, null, r); | |
if (x.s < 0 && r.compareTo(BigInteger.ZERO) > 0) | |
this.m.subTo(r, r); | |
return r; | |
} | |
// x/R mod m | |
function montRevert(x) { | |
var r = nbi(); | |
x.copyTo(r); | |
this.reduce(r); | |
return r; | |
} | |
// x = x/R mod m (HAC 14.32) | |
function montReduce(x) { | |
while (x.t <= this.mt2)// pad x so am has enough room later | |
x[x.t++] = 0; | |
for (var i = 0; i < this.m.t; ++i) { | |
// faster way of calculating u0 = x[i]*mp mod DV | |
var j = x[i] & 0x7fff; | |
var u0 = (j * this.mpl + (((j * this.mph + (x[i] >> 15) * this.mpl) & this.um) << 15)) & x.DM; | |
// use am to combine the multiply-shift-add into one call | |
j = i + this.m.t; | |
x[j] += this.m.am(0, u0, x, i, 0, this.m.t); | |
// propagate carry | |
while (x[j] >= x.DV) { | |
x[j] -= x.DV; | |
x[++j]++; | |
} | |
} | |
x.clamp(); | |
x.drShiftTo(this.m.t, x); | |
if (x.compareTo(this.m) >= 0) | |
x.subTo(this.m, x); | |
} | |
// r = "x^2/R mod m"; x != r | |
function montSqrTo(x, r) { | |
x.squareTo(r); | |
this.reduce(r); | |
} | |
// r = "xy/R mod m"; x,y != r | |
function montMulTo(x, y, r) { | |
x.multiplyTo(y, r); | |
this.reduce(r); | |
} | |
Montgomery.prototype.convert = montConvert; | |
Montgomery.prototype.revert = montRevert; | |
Montgomery.prototype.reduce = montReduce; | |
Montgomery.prototype.mulTo = montMulTo; | |
Montgomery.prototype.sqrTo = montSqrTo; | |
// (protected) true iff this is even | |
function bnpIsEven() { | |
return ((this.t > 0) ? (this[0] & 1) : this.s) == 0; | |
} | |
// (protected) this^e, e < 2^32, doing sqr and mul with "r" (HAC 14.79) | |
function bnpExp(e, z) { | |
if (e > 0xffffffff || e < 1) | |
return BigInteger.ONE; | |
var r = nbi(), r2 = nbi(), g = z.convert(this), i = nbits(e) - 1; | |
g.copyTo(r); | |
while (--i >= 0) { | |
z.sqrTo(r, r2); | |
if ((e & (1 << i)) > 0) | |
z.mulTo(r2, g, r); | |
else { | |
var t = r; | |
r = r2; | |
r2 = t; | |
} | |
} | |
return z.revert(r); | |
} | |
// (public) this^e % m, 0 <= e < 2^32 | |
function bnModPowInt(e, m) { | |
var z; | |
if (e < 256 || m.isEven()) | |
z = new Classic(m); | |
else | |
z = new Montgomery(m); | |
return this.exp(e, z); | |
} | |
// protected | |
BigInteger.prototype.copyTo = bnpCopyTo; | |
BigInteger.prototype.fromInt = bnpFromInt; | |
BigInteger.prototype.fromString = bnpFromString; | |
BigInteger.prototype.clamp = bnpClamp; | |
BigInteger.prototype.dlShiftTo = bnpDLShiftTo; | |
BigInteger.prototype.drShiftTo = bnpDRShiftTo; | |
BigInteger.prototype.lShiftTo = bnpLShiftTo; | |
BigInteger.prototype.rShiftTo = bnpRShiftTo; | |
BigInteger.prototype.subTo = bnpSubTo; | |
BigInteger.prototype.multiplyTo = bnpMultiplyTo; | |
BigInteger.prototype.squareTo = bnpSquareTo; | |
BigInteger.prototype.divRemTo = bnpDivRemTo; | |
BigInteger.prototype.invDigit = bnpInvDigit; | |
BigInteger.prototype.isEven = bnpIsEven; | |
BigInteger.prototype.exp = bnpExp; | |
// public | |
BigInteger.prototype.toString = bnToString; | |
BigInteger.prototype.negate = bnNegate; | |
BigInteger.prototype.abs = bnAbs; | |
BigInteger.prototype.compareTo = bnCompareTo; | |
BigInteger.prototype.bitLength = bnBitLength; | |
BigInteger.prototype.mod = bnMod; | |
BigInteger.prototype.modPowInt = bnModPowInt; | |
// "constants" | |
BigInteger.ZERO = nbv(0); | |
BigInteger.ONE = nbv(1); |
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
// prng4.js - uses Arcfour as a PRNG | |
function Arcfour() { | |
this.i = 0; | |
this.j = 0; | |
this.S = new Array(); | |
} | |
// Initialize arcfour context from key, an array of ints, each from [0..255] | |
function ARC4init(key) { | |
var i, j, t; | |
for(i = 0; i < 256; ++i) | |
this.S[i] = i; | |
j = 0; | |
for(i = 0; i < 256; ++i) { | |
j = (j + this.S[i] + key[i % key.length]) & 255; | |
t = this.S[i]; | |
this.S[i] = this.S[j]; | |
this.S[j] = t; | |
} | |
this.i = 0; | |
this.j = 0; | |
} | |
function ARC4next() { | |
var t; | |
this.i = (this.i + 1) & 255; | |
this.j = (this.j + this.S[this.i]) & 255; | |
t = this.S[this.i]; | |
this.S[this.i] = this.S[this.j]; | |
this.S[this.j] = t; | |
return this.S[(t + this.S[this.i]) & 255]; | |
} | |
Arcfour.prototype.init = ARC4init; | |
Arcfour.prototype.next = ARC4next; | |
// Plug in your RNG constructor here | |
function prng_newstate() { | |
return new Arcfour(); | |
} | |
// Pool size must be a multiple of 4 and greater than 32. | |
// An array of bytes the size of the pool will be passed to init() | |
var rng_psize = 256; |
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
// THIS FILE WAS MODIFIED TO WORK WITH TITANIUM CHECK FOR THE TAG "TICHANGES" TO SEE WHAT CHANGED | |
// THIS FILE MIGHT HAVE LESS RANDOMNESS THAN THE ORIGINAL (we don't have the window's random generator | |
// from the navigator -- there is no navigator) | |
// Random number generator - requires a PRNG backend, e.g. prng4.js | |
// For best results, put code like | |
// <body onClick='rng_seed_time();' onKeyPress='rng_seed_time();'> | |
// in your main HTML document. | |
var rng_state; | |
var rng_pool; | |
var rng_pptr; | |
// Mix in a 32-bit integer into the pool | |
function rng_seed_int(x) { | |
rng_pool[rng_pptr++] ^= x & 255; | |
rng_pool[rng_pptr++] ^= (x >> 8) & 255; | |
rng_pool[rng_pptr++] ^= (x >> 16) & 255; | |
rng_pool[rng_pptr++] ^= (x >> 24) & 255; | |
if(rng_pptr >= rng_psize) rng_pptr -= rng_psize; | |
} | |
// Mix in the current time (w/milliseconds) into the pool | |
function rng_seed_time() { | |
rng_seed_int(new Date().getTime()); | |
} | |
// Initialize the pool with junk if needed. | |
if(rng_pool == null) { | |
rng_pool = new Array(); | |
rng_pptr = 0; | |
var t; | |
// TICHANGES | |
// Here I changed to only get the randomness from Math.random. | |
// The original used window.crypto when possible | |
while(rng_pptr < rng_psize) { // extract some randomness from Math.random() | |
t = Math.floor(65536 * Math.random()); | |
rng_pool[rng_pptr++] = t >>> 8; | |
rng_pool[rng_pptr++] = t & 255; | |
} | |
rng_pptr = 0; | |
rng_seed_time(); | |
//rng_seed_int(window.screenX); | |
//rng_seed_int(window.screenY); | |
} | |
function rng_get_byte() { | |
if(rng_state == null) { | |
rng_seed_time(); | |
rng_state = prng_newstate(); | |
rng_state.init(rng_pool); | |
for(rng_pptr = 0; rng_pptr < rng_pool.length; ++rng_pptr) | |
rng_pool[rng_pptr] = 0; | |
rng_pptr = 0; | |
//rng_pool = null; | |
} | |
// TODO: allow reseeding after first request | |
return rng_state.next(); | |
} | |
function rng_get_bytes(ba) { | |
var i; | |
for(i = 0; i < ba.length; ++i) ba[i] = rng_get_byte(); | |
} | |
function SecureRandom() {} | |
SecureRandom.prototype.nextBytes = rng_get_bytes; |
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
// Depends on jsbn.js and rng.js | |
// Version 1.1: support utf-8 encoding in pkcs1pad2 | |
// convert a (hex) string to a bignum object | |
function parseBigInt(str,r) { | |
return new BigInteger(str,r); | |
} | |
function linebrk(s,n) { | |
var ret = ""; | |
var i = 0; | |
while(i + n < s.length) { | |
ret += s.substring(i,i+n) + "\n"; | |
i += n; | |
} | |
return ret + s.substring(i,s.length); | |
} | |
function byte2Hex(b) { | |
if(b < 0x10) | |
return "0" + b.toString(16); | |
else | |
return b.toString(16); | |
} | |
// PKCS#1 (type 2, random) pad input string s to n bytes, and return a bigint | |
function pkcs1pad2(s,n) { | |
if(n < s.length + 11) { // TODO: fix for utf-8 | |
alert("Message too long for RSA"); | |
return null; | |
} | |
var ba = new Array(); | |
var i = s.length - 1; | |
while(i >= 0 && n > 0) { | |
var c = s.charCodeAt(i--); | |
if(c < 128) { // encode using utf-8 | |
ba[--n] = c; | |
} | |
else if((c > 127) && (c < 2048)) { | |
ba[--n] = (c & 63) | 128; | |
ba[--n] = (c >> 6) | 192; | |
} | |
else { | |
ba[--n] = (c & 63) | 128; | |
ba[--n] = ((c >> 6) & 63) | 128; | |
ba[--n] = (c >> 12) | 224; | |
} | |
} | |
ba[--n] = 0; | |
var rng = new SecureRandom(); | |
var x = new Array(); | |
while(n > 2) { // random non-zero pad | |
x[0] = 0; | |
while(x[0] == 0) rng.nextBytes(x); | |
ba[--n] = x[0]; | |
} | |
ba[--n] = 2; | |
ba[--n] = 0; | |
return new BigInteger(ba); | |
} | |
// "empty" RSA key constructor | |
function RSAKey() { | |
this.n = null; | |
this.e = 0; | |
this.d = null; | |
this.p = null; | |
this.q = null; | |
this.dmp1 = null; | |
this.dmq1 = null; | |
this.coeff = null; | |
} | |
// Set the public key fields N and e from hex strings | |
function RSASetPublic(N,E) { | |
if(N != null && E != null && N.length > 0 && E.length > 0) { | |
this.n = parseBigInt(N,16); | |
this.e = parseInt(E,16); | |
} | |
else | |
alert("Invalid RSA public key"); | |
} | |
// Perform raw public operation on "x": return x^e (mod n) | |
function RSADoPublic(x) { | |
return x.modPowInt(this.e, this.n); | |
} | |
// Return the PKCS#1 RSA encryption of "text" as an even-length hex string | |
function RSAEncrypt(text) { | |
var m = pkcs1pad2(text,(this.n.bitLength()+7)>>3); | |
if(m == null) return null; | |
var c = this.doPublic(m); | |
if(c == null) return null; | |
var h = c.toString(16); | |
if((h.length & 1) == 0) return h; else return "0" + h; | |
} | |
// Return the PKCS#1 RSA encryption of "text" as a Base64-encoded string | |
//function RSAEncryptB64(text) { | |
// var h = this.encrypt(text); | |
// if(h) return hex2b64(h); else return null; | |
//} | |
// protected | |
RSAKey.prototype.doPublic = RSADoPublic; | |
// public | |
RSAKey.prototype.setPublic = RSASetPublic; | |
RSAKey.prototype.encrypt = RSAEncrypt; | |
//RSAKey.prototype.encrypt_b64 = RSAEncryptB64; |
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
/* | |
* A JavaScript implementation of the Secure Hash Algorithm, SHA-1, as defined | |
* in FIPS 180-1 | |
* Version 2.2 Copyright Paul Johnston 2000 - 2009. | |
* Other contributors: Greg Holt, Andrew Kepert, Ydnar, Lostinet | |
* Distributed under the BSD License | |
* See http://pajhome.org.uk/crypt/md5 for details. | |
*/ | |
/* | |
* Configurable variables. You may need to tweak these to be compatible with | |
* the server-side, but the defaults work in most cases. | |
*/ | |
var hexcase = 0; /* hex output format. 0 - lowercase; 1 - uppercase */ | |
var b64pad = ""; /* base-64 pad character. "=" for strict RFC compliance */ | |
/* | |
* These are the functions you'll usually want to call | |
* They take string arguments and return either hex or base-64 encoded strings | |
*/ | |
function hex_sha1(s) { return rstr2hex(rstr_sha1(str2rstr_utf8(s))); } | |
function b64_sha1(s) { return rstr2b64(rstr_sha1(str2rstr_utf8(s))); } | |
function any_sha1(s, e) { return rstr2any(rstr_sha1(str2rstr_utf8(s)), e); } | |
function hex_hmac_sha1(k, d) | |
{ return rstr2hex(rstr_hmac_sha1(str2rstr_utf8(k), str2rstr_utf8(d))); } | |
function b64_hmac_sha1(k, d) | |
{ return rstr2b64(rstr_hmac_sha1(str2rstr_utf8(k), str2rstr_utf8(d))); } | |
function any_hmac_sha1(k, d, e) | |
{ return rstr2any(rstr_hmac_sha1(str2rstr_utf8(k), str2rstr_utf8(d)), e); } | |
/* | |
* Perform a simple self-test to see if the VM is working | |
*/ | |
function sha1_vm_test() | |
{ | |
return hex_sha1("abc").toLowerCase() == "a9993e364706816aba3e25717850c26c9cd0d89d"; | |
} | |
/* | |
* Calculate the SHA1 of a raw string | |
*/ | |
function rstr_sha1(s) | |
{ | |
return binb2rstr(binb_sha1(rstr2binb(s), s.length * 8)); | |
} | |
/* | |
* Calculate the HMAC-SHA1 of a key and some data (raw strings) | |
*/ | |
function rstr_hmac_sha1(key, data) | |
{ | |
var bkey = rstr2binb(key); | |
if(bkey.length > 16) bkey = binb_sha1(bkey, key.length * 8); | |
var ipad = Array(16), opad = Array(16); | |
for(var i = 0; i < 16; i++) | |
{ | |
ipad[i] = bkey[i] ^ 0x36363636; | |
opad[i] = bkey[i] ^ 0x5C5C5C5C; | |
} | |
var hash = binb_sha1(ipad.concat(rstr2binb(data)), 512 + data.length * 8); | |
return binb2rstr(binb_sha1(opad.concat(hash), 512 + 160)); | |
} | |
/* | |
* Convert a raw string to a hex string | |
*/ | |
function rstr2hex(input) | |
{ | |
try { hexcase } catch(e) { hexcase=0; } | |
var hex_tab = hexcase ? "0123456789ABCDEF" : "0123456789abcdef"; | |
var output = ""; | |
var x; | |
for(var i = 0; i < input.length; i++) | |
{ | |
x = input.charCodeAt(i); | |
output += hex_tab.charAt((x >>> 4) & 0x0F) | |
+ hex_tab.charAt( x & 0x0F); | |
} | |
return output; | |
} | |
/* | |
* Convert a raw string to a base-64 string | |
*/ | |
function rstr2b64(input) | |
{ | |
try { b64pad } catch(e) { b64pad=''; } | |
var tab = "ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz0123456789+/"; | |
var output = ""; | |
var len = input.length; | |
for(var i = 0; i < len; i += 3) | |
{ | |
var triplet = (input.charCodeAt(i) << 16) | |
| (i + 1 < len ? input.charCodeAt(i+1) << 8 : 0) | |
| (i + 2 < len ? input.charCodeAt(i+2) : 0); | |
for(var j = 0; j < 4; j++) | |
{ | |
if(i * 8 + j * 6 > input.length * 8) output += b64pad; | |
else output += tab.charAt((triplet >>> 6*(3-j)) & 0x3F); | |
} | |
} | |
return output; | |
} | |
/* | |
* Convert a raw string to an arbitrary string encoding | |
*/ | |
function rstr2any(input, encoding) | |
{ | |
var divisor = encoding.length; | |
var remainders = Array(); | |
var i, q, x, quotient; | |
/* Convert to an array of 16-bit big-endian values, forming the dividend */ | |
var dividend = Array(Math.ceil(input.length / 2)); | |
for(i = 0; i < dividend.length; i++) | |
{ | |
dividend[i] = (input.charCodeAt(i * 2) << 8) | input.charCodeAt(i * 2 + 1); | |
} | |
/* | |
* Repeatedly perform a long division. The binary array forms the dividend, | |
* the length of the encoding is the divisor. Once computed, the quotient | |
* forms the dividend for the next step. We stop when the dividend is zero. | |
* All remainders are stored for later use. | |
*/ | |
while(dividend.length > 0) | |
{ | |
quotient = Array(); | |
x = 0; | |
for(i = 0; i < dividend.length; i++) | |
{ | |
x = (x << 16) + dividend[i]; | |
q = Math.floor(x / divisor); | |
x -= q * divisor; | |
if(quotient.length > 0 || q > 0) | |
quotient[quotient.length] = q; | |
} | |
remainders[remainders.length] = x; | |
dividend = quotient; | |
} | |
/* Convert the remainders to the output string */ | |
var output = ""; | |
for(i = remainders.length - 1; i >= 0; i--) | |
output += encoding.charAt(remainders[i]); | |
/* Append leading zero equivalents */ | |
var full_length = Math.ceil(input.length * 8 / | |
(Math.log(encoding.length) / Math.log(2))) | |
for(i = output.length; i < full_length; i++) | |
output = encoding[0] + output; | |
return output; | |
} | |
/* | |
* Encode a string as utf-8. | |
* For efficiency, this assumes the input is valid utf-16. | |
*/ | |
function str2rstr_utf8(input) | |
{ | |
var output = ""; | |
var i = -1; | |
var x, y; | |
while(++i < input.length) | |
{ | |
/* Decode utf-16 surrogate pairs */ | |
x = input.charCodeAt(i); | |
y = i + 1 < input.length ? input.charCodeAt(i + 1) : 0; | |
if(0xD800 <= x && x <= 0xDBFF && 0xDC00 <= y && y <= 0xDFFF) | |
{ | |
x = 0x10000 + ((x & 0x03FF) << 10) + (y & 0x03FF); | |
i++; | |
} | |
/* Encode output as utf-8 */ | |
if(x <= 0x7F) | |
output += String.fromCharCode(x); | |
else if(x <= 0x7FF) | |
output += String.fromCharCode(0xC0 | ((x >>> 6 ) & 0x1F), | |
0x80 | ( x & 0x3F)); | |
else if(x <= 0xFFFF) | |
output += String.fromCharCode(0xE0 | ((x >>> 12) & 0x0F), | |
0x80 | ((x >>> 6 ) & 0x3F), | |
0x80 | ( x & 0x3F)); | |
else if(x <= 0x1FFFFF) | |
output += String.fromCharCode(0xF0 | ((x >>> 18) & 0x07), | |
0x80 | ((x >>> 12) & 0x3F), | |
0x80 | ((x >>> 6 ) & 0x3F), | |
0x80 | ( x & 0x3F)); | |
} | |
return output; | |
} | |
/* | |
* Encode a string as utf-16 | |
*/ | |
function str2rstr_utf16le(input) | |
{ | |
var output = ""; | |
for(var i = 0; i < input.length; i++) | |
output += String.fromCharCode( input.charCodeAt(i) & 0xFF, | |
(input.charCodeAt(i) >>> 8) & 0xFF); | |
return output; | |
} | |
function str2rstr_utf16be(input) | |
{ | |
var output = ""; | |
for(var i = 0; i < input.length; i++) | |
output += String.fromCharCode((input.charCodeAt(i) >>> 8) & 0xFF, | |
input.charCodeAt(i) & 0xFF); | |
return output; | |
} | |
/* | |
* Convert a raw string to an array of big-endian words | |
* Characters >255 have their high-byte silently ignored. | |
*/ | |
function rstr2binb(input) | |
{ | |
var output = Array(input.length >> 2); | |
for(var i = 0; i < output.length; i++) | |
output[i] = 0; | |
for(var i = 0; i < input.length * 8; i += 8) | |
output[i>>5] |= (input.charCodeAt(i / 8) & 0xFF) << (24 - i % 32); | |
return output; | |
} | |
/* | |
* Convert an array of big-endian words to a string | |
*/ | |
function binb2rstr(input) | |
{ | |
var output = ""; | |
for(var i = 0; i < input.length * 32; i += 8) | |
output += String.fromCharCode((input[i>>5] >>> (24 - i % 32)) & 0xFF); | |
return output; | |
} | |
/* | |
* Calculate the SHA-1 of an array of big-endian words, and a bit length | |
*/ | |
function binb_sha1(x, len) | |
{ | |
/* append padding */ | |
x[len >> 5] |= 0x80 << (24 - len % 32); | |
x[((len + 64 >> 9) << 4) + 15] = len; | |
var w = Array(80); | |
var a = 1732584193; | |
var b = -271733879; | |
var c = -1732584194; | |
var d = 271733878; | |
var e = -1009589776; | |
for(var i = 0; i < x.length; i += 16) | |
{ | |
var olda = a; | |
var oldb = b; | |
var oldc = c; | |
var oldd = d; | |
var olde = e; | |
for(var j = 0; j < 80; j++) | |
{ | |
if(j < 16) w[j] = x[i + j]; | |
else w[j] = bit_rol(w[j-3] ^ w[j-8] ^ w[j-14] ^ w[j-16], 1); | |
var t = safe_add(safe_add(bit_rol(a, 5), sha1_ft(j, b, c, d)), | |
safe_add(safe_add(e, w[j]), sha1_kt(j))); | |
e = d; | |
d = c; | |
c = bit_rol(b, 30); | |
b = a; | |
a = t; | |
} | |
a = safe_add(a, olda); | |
b = safe_add(b, oldb); | |
c = safe_add(c, oldc); | |
d = safe_add(d, oldd); | |
e = safe_add(e, olde); | |
} | |
return Array(a, b, c, d, e); | |
} | |
/* | |
* Perform the appropriate triplet combination function for the current | |
* iteration | |
*/ | |
function sha1_ft(t, b, c, d) | |
{ | |
if(t < 20) return (b & c) | ((~b) & d); | |
if(t < 40) return b ^ c ^ d; | |
if(t < 60) return (b & c) | (b & d) | (c & d); | |
return b ^ c ^ d; | |
} | |
/* | |
* Determine the appropriate additive constant for the current iteration | |
*/ | |
function sha1_kt(t) | |
{ | |
return (t < 20) ? 1518500249 : (t < 40) ? 1859775393 : | |
(t < 60) ? -1894007588 : -899497514; | |
} | |
/* | |
* Add integers, wrapping at 2^32. This uses 16-bit operations internally | |
* to work around bugs in some JS interpreters. | |
*/ | |
function safe_add(x, y) | |
{ | |
var lsw = (x & 0xFFFF) + (y & 0xFFFF); | |
var msw = (x >> 16) + (y >> 16) + (lsw >> 16); | |
return (msw << 16) | (lsw & 0xFFFF); | |
} | |
/* | |
* Bitwise rotate a 32-bit number to the left. | |
*/ | |
function bit_rol(num, cnt) | |
{ | |
return (num << cnt) | (num >>> (32 - cnt)); | |
} |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment