Last active
May 16, 2023 17:11
-
-
Save mavillan/de438ba936920fd1d5c540234f71b2e0 to your computer and use it in GitHub Desktop.
soft_ordering_1dcnn.py
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
import torch | |
from torch import nn | |
import pytorch_lightning as pl | |
class SoftOrdering1DCNN(pl.LightningModule): | |
def __init__(self, input_dim, output_dim, sign_size=32, cha_input=16, cha_hidden=32, | |
K=2, dropout_input=0.2, dropout_hidden=0.2, dropout_output=0.2): | |
super().__init__() | |
hidden_size = sign_size*cha_input | |
sign_size1 = sign_size | |
sign_size2 = sign_size//2 | |
output_size = (sign_size//4) * cha_hidden | |
self.hidden_size = hidden_size | |
self.cha_input = cha_input | |
self.cha_hidden = cha_hidden | |
self.K = K | |
self.sign_size1 = sign_size1 | |
self.sign_size2 = sign_size2 | |
self.output_size = output_size | |
self.dropout_input = dropout_input | |
self.dropout_hidden = dropout_hidden | |
self.dropout_output = dropout_output | |
self.batch_norm1 = nn.BatchNorm1d(input_dim) | |
self.dropout1 = nn.Dropout(dropout_input) | |
dense1 = nn.Linear(input_dim, hidden_size, bias=False) | |
self.dense1 = nn.utils.weight_norm(dense1) | |
# 1st conv layer | |
self.batch_norm_c1 = nn.BatchNorm1d(cha_input) | |
conv1 = conv1 = nn.Conv1d( | |
cha_input, | |
cha_input*K, | |
kernel_size=5, | |
stride = 1, | |
padding=2, | |
groups=cha_input, | |
bias=False) | |
self.conv1 = nn.utils.weight_norm(conv1, dim=None) | |
self.ave_po_c1 = nn.AdaptiveAvgPool1d(output_size = sign_size2) | |
# 2nd conv layer | |
self.batch_norm_c2 = nn.BatchNorm1d(cha_input*K) | |
self.dropout_c2 = nn.Dropout(dropout_hidden) | |
conv2 = nn.Conv1d( | |
cha_input*K, | |
cha_hidden, | |
kernel_size=3, | |
stride=1, | |
padding=1, | |
bias=False) | |
self.conv2 = nn.utils.weight_norm(conv2, dim=None) | |
# 3rd conv layer | |
self.batch_norm_c3 = nn.BatchNorm1d(cha_hidden) | |
self.dropout_c3 = nn.Dropout(dropout_hidden) | |
conv3 = nn.Conv1d( | |
cha_hidden, | |
cha_hidden, | |
kernel_size=3, | |
stride=1, | |
padding=1, | |
bias=False) | |
self.conv3 = nn.utils.weight_norm(conv3, dim=None) | |
# 4th conv layer | |
self.batch_norm_c4 = nn.BatchNorm1d(cha_hidden) | |
conv4 = nn.Conv1d( | |
cha_hidden, | |
cha_hidden, | |
kernel_size=5, | |
stride=1, | |
padding=2, | |
groups=cha_hidden, | |
bias=False) | |
self.conv4 = nn.utils.weight_norm(conv4, dim=None) | |
self.avg_po_c4 = nn.AvgPool1d(kernel_size=4, stride=2, padding=1) | |
self.flt = nn.Flatten() | |
self.batch_norm2 = nn.BatchNorm1d(output_size) | |
self.dropout2 = nn.Dropout(dropout_output) | |
dense2 = nn.Linear(output_size, output_dim, bias=False) | |
self.dense2 = nn.utils.weight_norm(dense2) | |
self.loss = nn.BCEWithLogitsLoss() | |
def forward(self, x): | |
x = self.batch_norm1(x) | |
x = self.dropout1(x) | |
x = nn.functional.celu(self.dense1(x)) | |
x = x.reshape(x.shape[0], self.cha_input, self.sign_size1) | |
x = self.batch_norm_c1(x) | |
x = nn.functional.relu(self.conv1(x)) | |
x = self.ave_po_c1(x) | |
x = self.batch_norm_c2(x) | |
x = self.dropout_c2(x) | |
x = nn.functional.relu(self.conv2(x)) | |
x_s = x | |
x = self.batch_norm_c3(x) | |
x = self.dropout_c3(x) | |
x = nn.functional.relu(self.conv3(x)) | |
x = self.batch_norm_c4(x) | |
x = self.conv4(x) | |
x = x + x_s | |
x = nn.functional.relu(x) | |
x = self.avg_po_c4(x) | |
x = self.flt(x) | |
x = self.batch_norm2(x) | |
x = self.dropout2(x) | |
x = self.dense2(x) | |
return x |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment
What to do next after this code. Can you provide me a sample of training a model for a dataset?