Last active
May 22, 2023 12:00
-
-
Save max-unfinity/806b3c9e95ab39f6dcc89137a791de81 to your computer and use it in GitHub Desktop.
Convenient function for visualizing tensors of any shape, supports batch_size.
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
import numpy as np | |
import torch | |
import torchvision | |
from matplotlib import pyplot as plt | |
# from PIL import Image | |
def show_tensor(tensor, transpose=None, normalize=None, figsize=(10,10), nrow=None, padding=2, verbose=True, **kwargs): | |
"""Convenient function for visualizing tensors of any shape, supports batch_size.""" | |
if not isinstance(tensor, torch.Tensor): | |
tensor = torch.tensor(np.array(tensor)) | |
tensor = tensor.detach().cpu().float() | |
if tensor.ndim == 4 and tensor.shape[1] == 1: | |
if verbose: print('processing as black&white') | |
tensor = tensor.repeat(1,3,1,1) | |
elif tensor.ndim == 3: | |
tensor = tensor.unsqueeze(0) | |
elif tensor.ndim == 2: | |
if verbose: print('processing as black&white') | |
tensor = tensor.unsqueeze(0).repeat(3,1,1).unsqueeze(0) | |
if normalize is None: | |
if tensor.max() <= 1.0 and tensor.min() >= 0.0: | |
normalize = False | |
else: | |
if verbose: print('tensor has been normalized to [0., 1.]') | |
normalize = True | |
if transpose is None: | |
transpose = True if tensor.shape[1] != 3 else False | |
if transpose: | |
tensor = tensor.permute(0,3,1,2) | |
if nrow is None: | |
nrow = int(np.ceil(np.sqrt(tensor.shape[0]))) | |
grid = torchvision.utils.make_grid(tensor, normalize=normalize, nrow=nrow, padding=padding, **kwargs) | |
grid = grid.permute(1,2,0).numpy() | |
plt.figure(figsize=figsize); plt.imshow(grid) | |
# return Image.fromarray((grid*255).astype(np.uint8)) |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment