Last active
August 5, 2024 02:36
-
-
Save maxberggren/b3ae92b26fd7039ccf22d937d49b1dfd to your computer and use it in GitHub Desktop.
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
def compare_on_dataset(data, target_variable=None, lr=0.001, patience=150): | |
from IPython.display import display | |
df = ( | |
pd.read_csv(data) | |
# Rename columns to lowercase and underscores | |
.pipe(lambda d: d.rename(columns={ | |
k: v for k, v in zip( | |
d.columns, | |
[c.lower().replace(' ', '_') for c in d.columns] | |
) | |
})) | |
# Switch categorical classes to integers | |
.assign(**{target_variable: lambda r: r[target_variable].astype('category').cat.codes}) | |
.pipe(lambda d: pd.get_dummies(d)) | |
) | |
y = df[target_variable].values | |
X = ( | |
# Drop target variable | |
df.drop(target_variable, axis=1) | |
# Min-max-scaling (only needed for the DL model) | |
.pipe(lambda d: (d-d.min())/d.max()).fillna(0) | |
.as_matrix() | |
) | |
X_train, X_test, y_train, y_test = train_test_split( | |
X, y, test_size=0.33, random_state=seed | |
) | |
m = Sequential() | |
m.add(Dense(128, activation='relu', input_shape=(X.shape[1],))) | |
m.add(Dropout(0.5)) | |
m.add(Dense(128, activation='relu')) | |
m.add(Dropout(0.5)) | |
m.add(Dense(128, activation='relu')) | |
m.add(Dropout(0.5)) | |
m.add(Dense(len(np.unique(y)), activation='softmax')) | |
m.compile( | |
optimizer=optimizers.Adam(lr=lr), | |
loss='categorical_crossentropy', | |
metrics=['accuracy'] | |
) | |
m.fit( | |
# Feature matrix | |
X_train, | |
# Target class one-hot-encoded | |
pd.get_dummies(pd.DataFrame(y_train), columns=[0]).as_matrix(), | |
# Iterations to be run if not stopped by EarlyStopping | |
epochs=200, | |
callbacks=[ | |
EarlyStopping(monitor='val_loss', patience=patience), | |
ModelCheckpoint( | |
'best.model', | |
monitor='val_loss', | |
save_best_only=True, | |
verbose=1 | |
) | |
], | |
verbose=2, | |
validation_split=0.1, | |
batch_size=256, | |
) | |
# Keep track of what class corresponds to what index | |
mapping = ( | |
pd.get_dummies(pd.DataFrame(y_train), columns=[0], prefix='', prefix_sep='') | |
.columns.astype(int).values | |
) | |
# Load the best model | |
m.load_weights("best.model") | |
y_test_preds = [mapping[pred] for pred in m.predict(X_test).argmax(axis=1)] | |
print 'Three layer deep neural net' | |
display(pd.crosstab( | |
pd.Series(y_test, name='Actual'), | |
pd.Series(y_test_preds, name='Predicted'), | |
margins=True | |
)) | |
print 'Accuracy: {0:.3f}'.format(accuracy_score(y_test, y_test_preds)) | |
boostrap_stats_samples = [ | |
np.random.choice((y_test == y_test_preds), size=int(len(y_test)*.5)).mean() | |
for _ in range(10000) | |
] | |
print 'Boostrapped accuracy 95 % interval', np.percentile(boostrap_stats_samples, 5), np.percentile(boostrap_stats_samples, 95) | |
params_fixed = { | |
'objective': 'binary:logistic', | |
'silent': 1, | |
'seed': seed, | |
} | |
space = { | |
'max_depth': (1, 5), | |
'learning_rate': (10**-4, 10**-1), | |
'n_estimators': (10, 200), | |
'min_child_weight': (1, 20), | |
'subsample': (0, 1), | |
'colsample_bytree': (0.3, 1) | |
} | |
reg = XGBClassifier(**params_fixed) | |
def objective(params): | |
""" Wrap a cross validated inverted `accuracy` as objective func """ | |
reg.set_params(**{k: p for k, p in zip(space.keys(), params)}) | |
return 1-np.mean(cross_val_score( | |
reg, X_train, y_train, cv=5, n_jobs=-1, | |
scoring='accuracy') | |
) | |
res_gp = gp_minimize(objective, space.values(), n_calls=50, random_state=seed) | |
best_hyper_params = {k: v for k, v in zip(space.keys(), res_gp.x)} | |
params = best_hyper_params.copy() | |
params.update(params_fixed) | |
clf = XGBClassifier(**params) | |
clf.fit(X_train, y_train) | |
y_test_preds = clf.predict(X_test) | |
print '' | |
print 'Xgboost' | |
display(pd.crosstab( | |
pd.Series(y_test, name='Actual'), | |
pd.Series(y_test_preds, name='Predicted'), | |
margins=True | |
)) | |
print 'Accuracy: {0:.3f}'.format(accuracy_score(y_test, y_test_preds)) | |
boostrap_stats_samples = [ | |
np.random.choice((y_test == y_test_preds), size=int(len(y_test)*.5)).mean() | |
for _ in range(10000) | |
] | |
print 'Boostrapped accuracy 95 % interval', np.percentile(boostrap_stats_samples, 5), '-', np.percentile(boostrap_stats_samples, 95) |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment