Skip to content

Instantly share code, notes, and snippets.

@maxgfr
Last active March 8, 2018 09:47
Show Gist options
  • Save maxgfr/4acfecbd0995127f88c7b322825eba4f to your computer and use it in GitHub Desktop.
Save maxgfr/4acfecbd0995127f88c7b322825eba4f to your computer and use it in GitHub Desktop.
CNN on tensorflow
"""
From Jeremie :)
"""
from __future__ import print_function
import numpy
import tensorflow as tf
rng = numpy.random
# Parameters
learning_rate = 0.01
training_epochs = 100
display_step = 5
batch_size = 2
data_a = numpy.asarray([
[0, 0, 0],
[1, 1, 1],
[2, 2, 2],
[3, 3, 3],
[4, 4, 4],
[5, 5, 5],
[6, 6, 6],
[7, 7, 7],
[8, 8, 8],
[9, 9, 9],
])
data_y = numpy.asarray([
[0, 1],
[0, 1],
[0, 1],
[0, 1],
[0, 1],
[1, 0],
[1, 0],
[1, 0],
[1, 0],
[1, 0]
])
n_hidden_1 = 10 # 1st layer number of features
n_hidden_2 = 10 # 2nd layer number of features
n_input = 3 # MNIST data input (img shape: 28*28)
n_classes = 2 # MNIST total classes (0-9 digits)
X = tf.placeholder(tf.float32, [None, n_input]) # 3 features
Y = tf.placeholder(tf.float32, [None, n_classes]) # binary classification
W = tf.Variable(tf.random_normal(shape=(3, 2), mean=1, stddev=0.1), dtype=tf.float32)
b = tf.Variable(tf.zeros([2]))
def mlp(x, weights, biases):
# Hidden layer with RELU activation
layer_1 = tf.add(tf.matmul(x, weights['h1']), biases['b1'])
layer_1 = tf.nn.relu(layer_1)
# Hidden layer with RELU activation
layer_2 = tf.add(tf.matmul(layer_1, weights['h2']), biases['b2'])
layer_2 = tf.nn.relu(layer_2)
# Output layer with linear activation
out_layer = tf.matmul(layer_2, weights['out']) + biases['out']
return out_layer
weights = {
'h1': tf.Variable(tf.random_normal([n_input, n_hidden_1])),
'h2': tf.Variable(tf.random_normal([n_hidden_1, n_hidden_2])),
'out': tf.Variable(tf.random_normal([n_hidden_2, n_classes]))
}
biases = {
'b1': tf.Variable(tf.random_normal([n_hidden_1])),
'b2': tf.Variable(tf.random_normal([n_hidden_2])),
'out': tf.Variable(tf.random_normal([n_classes]))
}
prediction = mlp(X, weights, biases)
cost = tf.reduce_mean(tf.nn.softmax_cross_entropy_with_logits(logits=prediction, labels=Y))
optimizer = tf.train.AdamOptimizer(learning_rate=learning_rate).minimize(cost)
init = tf.global_variables_initializer()
# Launch the graph
with tf.Session() as sess:
sess.run(init)
# Training cycle
for step in range(training_epochs):
offset = (step * batch_size) % (data_y.shape[0] - batch_size)
batch_data = data_a[offset:(offset + batch_size), :]
batch_labels = data_y[offset:(offset + batch_size)]
feed_dict = {X: batch_data, Y: batch_labels}
_, c = sess.run([optimizer, cost], feed_dict=feed_dict)
print("Optimization Finished!")
# Test model
correct_prediction = tf.equal(tf.argmax(prediction, 1), tf.argmax(Y, 1))
# Calculate accuracy
accuracy = tf.reduce_mean(tf.cast(correct_prediction, tf.float32))
print("Accuracy:", accuracy.eval({X: data_a, Y: data_y}))
Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment