Created
April 14, 2015 09:27
-
-
Save maxkarelov/93877a7b285b95da9bce to your computer and use it in GitHub Desktop.
Implementation of the Liang–Barsky algorithm for clipping polygons
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
#define INFINITY float::MaxValue | |
polygon^ Pclip (polygon^ P, point Pmin, point Pmax) { | |
polygon^ P1 = gcnew polygon(0); | |
point A = P[P->Count - 1]; | |
int k = 0; | |
while (k < P->Count) { | |
point B = P[k]; | |
float t1out, t2in, t2out, | |
xin, xout, txin, txout, | |
yin, yout, tyin, tyout; | |
float dx = B.x - A.x; | |
float dy = B.y - A.y; | |
if (dx > 0 || dx == 0 && A.x > Pmax.x) { | |
xin = Pmin.x; | |
xout = Pmax.x; | |
} | |
else { | |
xin = Pmax.x; | |
xout = Pmin.x; | |
} | |
if (dy > 0 || dy == 0 && A.y > Pmax.y) { | |
yin = Pmin.y; | |
yout = Pmax.y; | |
} | |
else { | |
yin = Pmax.y; | |
yout = Pmin.y; | |
} | |
if (dx != 0) | |
txout = (xout - A.x) / dx; | |
else if (A.x >= Pmin.x && A.x <= Pmax.x) | |
txout = INFINITY; | |
else | |
txout = -INFINITY; | |
if (dy != 0) | |
tyout = (yout - A.y) / dy; | |
else if (A.y >= Pmin.y && A.y <= Pmax.y) | |
tyout = INFINITY; | |
else | |
tyout = -INFINITY; | |
if (txout < tyout) { | |
t1out = txout; | |
t2out = tyout; | |
} | |
else { | |
t1out = tyout; | |
t2out = txout; | |
} | |
if (t2out > 0) { | |
if (dx != 0) | |
txin = (xin - A.x) / dx; | |
else | |
txin = -INFINITY; | |
if (dy != 0) | |
tyin = (yin - A.y) / dy; | |
else | |
tyin = -INFINITY; | |
if (txin < tyin) | |
t2in = tyin; | |
else | |
t2in = txin; | |
if (t1out < t2in) { | |
if (t1out > 0 && t1out <= 1) { | |
if (txin < tyin) { | |
point tp; | |
tp.x = xout; | |
tp.y = yin; | |
P1->Add(tp); | |
} | |
else { | |
point tp; | |
tp.x = xout; | |
tp.y = yin; | |
P1->Add(tp); | |
} | |
} | |
} | |
else if (t1out > 0 && t2in <=1) { | |
if (t2in >= 0) { | |
if (txin > tyin) { | |
point tp; | |
tp.x = xin; | |
tp.y = A.y + txin * dy; | |
P1->Add(tp); | |
} | |
else { | |
point tp; | |
tp.x = A.x + tyin * dx; | |
tp.y = yin; | |
P1->Add(tp); | |
} | |
} | |
if (t1out <= 1) { | |
if (txout < tyout) { | |
point tp; | |
tp.x = xout; | |
tp.y = A.y + txout * dy; | |
P1->Add(tp); | |
} | |
else { | |
point tp; | |
tp.x = A.x + tyout * dx; | |
tp.y = yout; | |
P1->Add(tp); | |
} | |
} | |
else { | |
P1->Add(B); | |
} | |
} | |
if (t2out > 0 && t2out <= 1) { | |
point tp; | |
tp.x = xout; | |
tp.y = yout; | |
P1->Add(tp); | |
} | |
} | |
k++; | |
A = B; | |
} | |
return P1; | |
} |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment