-
-
Save mayblue9/581c2ae9cf22b8b5be206b5e03d3fe6d to your computer and use it in GitHub Desktop.
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
#!/usr/bin/env python | |
import networkx as nx | |
import matplotlib.pyplot as plt | |
import math | |
from random import random | |
from numpy import arange | |
N = 1000 | |
K = 5 | |
P = 0.05 | |
# attractive force | |
def f_a(d,k): | |
return d*d/k | |
# repulsive force | |
def f_r(d,k): | |
return k*k/d | |
def fruchterman_reingold(G,iteration=50): | |
W = 1 | |
L = 1 | |
area = W*L | |
k = math.sqrt(area/nx.number_of_nodes(G)) | |
# initial position | |
for v in nx.nodes_iter(G): | |
G.node[v]['x'] = W*random() | |
G.node[v]['y'] = L*random() | |
t = W/10 | |
dt = t/(iteration+1) | |
print("area:{0}".format(area)) | |
print("k:{0}".format(k)) | |
print("t:{0}, dt:{1}".format(t,dt)) | |
for i in range(iteration): | |
print("iter {0}".format(i)) | |
pos = {} | |
for v in G.nodes_iter(): | |
pos[v] = [G.node[v]['x'],G.node[v]['y']] | |
plt.close() | |
plt.ylim([-0.1,1.1]) | |
plt.xlim([-0.1,1.1]) | |
plt.axis('off') | |
nx.draw_networkx(G,pos=pos,node_size=10,width=0.1,with_labels=False) | |
plt.savefig("fig/{0}.png".format(i)) | |
# calculate repulsive forces | |
for v in G.nodes_iter(): | |
G.node[v]['dx'] = 0 | |
G.node[v]['dy'] = 0 | |
for u in G.nodes_iter(): | |
if v != u: | |
dx = G.node[v]['x'] - G.node[u]['x'] | |
dy = G.node[v]['y'] - G.node[u]['y'] | |
delta = math.sqrt(dx*dx+dy*dy) | |
if delta != 0: | |
d = f_r(delta,k)/delta | |
G.node[v]['dx'] += dx*d | |
G.node[v]['dy'] += dy*d | |
# calculate attractive forces | |
for v,u in G.edges_iter(): | |
dx = G.node[v]['x'] - G.node[u]['x'] | |
dy = G.node[v]['y'] - G.node[u]['y'] | |
delta = math.sqrt(dx*dx+dy*dy) | |
if delta != 0: | |
d = f_a(delta,k)/delta | |
ddx = dx*d | |
ddy = dy*d | |
G.node[v]['dx'] += -ddx | |
G.node[u]['dx'] += +ddx | |
G.node[v]['dy'] += -ddy | |
G.node[u]['dy'] += +ddy | |
# limit the maximum displacement to the temperature t | |
# and then prevent from being displace outside frame | |
for v in G.nodes_iter(): | |
dx = G.node[v]['dx'] | |
dy = G.node[v]['dy'] | |
disp = math.sqrt(dx*dx+dy*dy) | |
if disp != 0: | |
cnt += 1 | |
d = min(disp,t)/disp | |
x = G.node[v]['x'] + dx*d | |
y = G.node[v]['y'] + dy*d | |
x = min(W,max(0,x)) - W/2 | |
y = min(L,max(0,y)) - L/2 | |
G.node[v]['x'] = min(math.sqrt(W*W/4-y*y),max(-math.sqrt(W*W/4-y*y),x)) + W/2 | |
G.node[v]['y'] = min(math.sqrt(L*L/4-x*x),max(-math.sqrt(L*L/4-x*x),y)) + L/2 | |
# cooling | |
t -= dt | |
pos = {} | |
for v in G.nodes_iter(): | |
pos[v] = [G.node[v]['x'],G.node[v]['y']] | |
plt.close() | |
plt.ylim([-0.1,1.1]) | |
plt.xlim([-0.1,1.1]) | |
plt.axis('off') | |
nx.draw_networkx(G,pos=pos,node_size=10,width=0.1,with_labels=False) | |
plt.savefig("fig/{0}.png".format(i+1)) | |
return pos | |
def main(): | |
G = nx.watts_strogatz_graph(N,K,P) | |
pos = fruchterman_reingold(G) | |
plt.close() | |
plt.ylim([-0.1,1.1]) | |
plt.xlim([-0.1,1.1]) | |
plt.axis('off') | |
nx.draw_networkx(G,pos=nx.spring_layout(G),node_size=10,width=0.1,with_labels=False) | |
plt.savefig("fig/orig.png") | |
if __name__ == "__main__": | |
main() |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment