Last active
August 29, 2015 14:17
-
-
Save mazieres/a210615ea69f6dd32f24 to your computer and use it in GitHub Desktop.
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
import unittest | |
class TestExtract(unittest.TestCase): | |
def test_adjacency_matrix(self): | |
X = np.array([ | |
[1, 8, 3], | |
[5, 0, 0], | |
[0, 4, 2]]) | |
tested = adjacency_matrix(X) | |
expected = np.array([ | |
[(0,), (1,), (2,)], | |
[(1,), (0,), (0,)], | |
[(2,), (0,), (0,)]], dtype=[('weight', '<i8')]) | |
test = np.array_equal(expected, tested) | |
msg = '\nExpected:\n{}\nGot:\n{}'.format(expected, tested) | |
self.assertTrue(test, msg=msg) | |
def adjacency_matrix(mat): | |
''' | |
Returns adjacency matrix from a bipartite graph weights matrix | |
''' | |
n_samples = mat.shape[0] | |
res = np.ndarray((n_samples, n_samples), dtype=np.dtype([("weight", int)])) | |
i = 0 | |
while i < n_samples: | |
j = 0 | |
while j < n_samples: | |
if i == j: | |
res[i][j] = (0,) | |
else: | |
res[i][j] = (np.logical_and(mat[i], mat[j]).sum(),) | |
j += 1 | |
i += 1 | |
return res |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment