Created
July 19, 2021 10:32
-
-
Save mbednarski/caf1fe413ec16774dba9ce9b97c89ed8 to your computer and use it in GitHub Desktop.
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
from sklearn.datasets import load_iris | |
from sklearn.model_selection import train_test_split | |
from sklearn.tree import DecisionTreeClassifier | |
import optuna | |
X, y = load_iris(return_X_y=True) | |
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=.20, stratify=y) | |
def objective(trial: optuna.Trial): | |
params = { | |
'max_depth': trial.suggest_int('max_depth', 1, 20), | |
'criterion': trial.suggest_categorical('crterion', ['gini', 'entropy']), | |
'min_samples_split': trial.suggest_float('min_samples_split', 0.1, 1.0,log=True) | |
} | |
clf = DecisionTreeClassifier(**params) | |
clf.fit(X_train, y_train) | |
score = clf.score(X_test, y_test) # acc | |
return score | |
study = optuna.create_study(study_name='irysy', storage='sqlite:///irysy.db', direction='maximize', load_if_exists=True) | |
study.optimize(objective, n_trials=20) | |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
from sklearn.datasets import load_digits | |
from sklearn.model_selection import train_test_split | |
from sklearn.tree import DecisionTreeClassifier | |
from sklearn.svm import SVR | |
import optuna | |
X, y = load_digits(return_X_y=True) | |
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=.20, stratify=y) | |
def objective(trial: optuna.Trial): | |
type_ = trial.suggest_categorical('type_', ['svr', 'rf']) | |
if type_ == 'rf': | |
params = { | |
'max_depth': trial.suggest_int('max_depth', 1, 20), | |
'criterion': trial.suggest_categorical('crterion', ['gini', 'entropy']), | |
'min_samples_split': trial.suggest_float('min_samples_split', 0.1, 1.0,log=True), | |
'max_features': trial.suggest_categorical('max_features', ["auto", "sqrt", "log2"]) | |
} | |
clf = DecisionTreeClassifier(**params) | |
clf.fit(X_train, y_train) | |
score = clf.score(X_test, y_test) # acc | |
return score | |
elif type_ == 'svr': | |
params = { | |
'kernel': trial.suggest_categorical('kernel', ['linear', 'poly', 'rbf', 'sigmoid']), | |
'degree': trial.suggest_int('degree', 1, 3), | |
'C': trial.suggest_float('C', 0.01, 10, log=True) | |
} | |
clf = SVR(**params) | |
clf.fit(X_train, y_train) | |
score = clf.score(X_test, y_test) # acc | |
return score | |
study = optuna.create_study(study_name='digits2', storage='sqlite:///digits2.db', direction='maximize', load_if_exists=True) | |
study.optimize(objective, n_trials=200) | |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment