Created
March 6, 2018 23:27
-
-
Save mbednarski/ce4e82b0a12540359e68003cabe6a56b to your computer and use it in GitHub Desktop.
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
| embedding_dims = 5 | |
| W1 = Variable(torch.randn(embedding_dims, vocabulary_size).float(), requires_grad=True) | |
| W2 = Variable(torch.randn(vocabulary_size, embedding_dims).float(), requires_grad=True) | |
| num_epochs = 100 | |
| learning_rate = 0.001 | |
| for epo in range(num_epochs): | |
| loss_val = 0 | |
| for data, target in idx_pairs: | |
| x = Variable(get_input_layer(data)).float() | |
| y_true = Variable(torch.from_numpy(np.array([target])).long()) | |
| z1 = torch.matmul(W1, x) | |
| z2 = torch.matmul(W2, z1) | |
| log_softmax = F.log_softmax(z2, dim=0) | |
| loss = F.nll_loss(log_softmax.view(1,-1), y_true) | |
| loss_val += loss.data[0] | |
| loss.backward() | |
| W1.data -= learning_rate * W1.grad.data | |
| W2.data -= learning_rate * W2.grad.data | |
| W1.grad.data.zero_() | |
| W2.grad.data.zero_() | |
| if epo % 10 == 0: | |
| print(f'Loss at epo {epo}: {loss_val/len(idx_pairs)}') |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment