Created
May 4, 2022 21:42
-
-
Save mberr/894109e59df27f0cc151b979fc8ec60f to your computer and use it in GitHub Desktop.
A simple PyTorch implementation of rational activation functions.
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
import torch | |
from torch import nn | |
class RationalActivation(nn.Module): | |
""" | |
A rational activation function with trainable parameters. | |
Inspired by https://arxiv.org/abs/2205.01549. | |
.. seealso:: | |
https://en.wikipedia.org/wiki/Rational_function | |
https://github.com/ml-research/rational_activations | |
https://arxiv.org/abs/1907.06732 | |
""" | |
def __init__(self, n: int = 4, m: int = 5) -> None: | |
""" | |
Initialize the activation. | |
:param n: | |
the nominator polynom degree. | |
:param m: | |
the denominator polynom degree. | |
""" | |
super().__init__() | |
# add zero degree parameter | |
n, m = n + 1, m + 1 | |
self.m = m | |
self.n = n | |
self.k = max(m, n) | |
self.w_p = nn.Parameter(torch.empty(n)) | |
self.w_q = nn.Parameter(torch.empty(m)) | |
self.reset_parameters() | |
def reset_parameters(self): | |
# these could be fitted to match existing activation functions | |
nn.init.uniform_(self.w_p) | |
nn.init.uniform_(self.w_q) | |
def forward(self, x: torch.Tensor) -> torch.Tensor: | |
# calculate exponentation only once | |
x = x.unsqueeze(dim=-1) ** torch.arange(self.k, device=x.device, dtype=x.dtype).view(*ones_like(x.shape), -1) | |
# use einsum to avoid manual reshaping | |
nom = torch.einsum("...i, i -> ...", x[..., : self.n], self.w_p) | |
denom = torch.einsum("...i, i -> ...", x[..., : self.m], self.w_q) | |
# make sure rational function does not have poles | |
return nom / (1 + denom.abs()) |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment