Last active
February 17, 2024 03:46
-
-
Save mbijon/1332348 to your computer and use it in GitHub Desktop.
Fast Fourier Transform in PHP
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
<?php | |
// !!! Warning: for reference, not debugged | |
################################################################### | |
# PHP_Fourier 0.03b | |
# Original Fortran source by Numerical Recipies | |
# PHP port by Mathew Binkley ([email protected]) | |
################################################################### | |
################################################################### | |
# Fourier($data, $sign) - Performs the FFT on the *complex* | |
# array $data | |
# | |
# Presumes that count($data) is an integer power of two (ie: 2^n) | |
# (hint: When your $data length is not a power of 2, pad with zeros to the next-higher power.) | |
# | |
# $data[even] holds the real portion | |
# $data[odd] hold the imaginary portion | |
# | |
# Example: (1 + 2i) -> $data[0] = 1; $data[1] = 2; | |
# | |
# $sign = 1 performs the Fourier Transform | |
# $sign = -1 performs the Inverse Fourier Transform | |
# | |
# Use: | |
# FFT operates on an array | |
# $data = array(1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16); # 16 = 2^4 | |
# | |
# Compute FFT of the `$data` array: | |
# $FFT_array = Fourier($data, 1); | |
# | |
# Compute inverse FFT, which should equal our original `$data` vector: | |
# $Inverse_FFT_array = Fourier($FFT_array, -1); | |
# | |
################################################################### | |
function Fourier($input, $isign) { | |
##################################################################### | |
# We need to shift the array up one because this script is a direct | |
# port of the fortran program from NR. Should fix in future. | |
##################################################################### | |
$data[0] = 0; | |
for ($i = 0; $i < count($input); $i++) $data[($i+1)] = $input[$i]; | |
$n = count($input); | |
$j = 1; | |
for ($i = 1; $i < $n; $i += 2) { | |
if ($j > $i) { | |
list($data[($j+0)], $data[($i+0)]) = array($data[($i+0)], $data[($j+0)]); | |
list($data[($j+1)], $data[($i+1)]) = array($data[($i+1)], $data[($j+1)]); | |
} | |
$m = $n >> 1; | |
while (($m >= 2) && ($j > $m)) { | |
$j -= $m; | |
$m = $m >> 1; | |
} | |
$j += $m; | |
} | |
$mmax = 2; | |
while ($n > $mmax) { # Outer loop executed log2(nn) times | |
$istep = $mmax << 1; | |
$theta = $isign * 2*pi()/$mmax; | |
$wtemp = sin(0.5 * $theta); | |
$wpr = -2.0*$wtemp*$wtemp; | |
$wpi = sin($theta); | |
$wr = 1.0; | |
$wi = 0.0; | |
for ($m = 1; $m < $mmax; $m += 2) { # Here are the two nested inner loops | |
for ($i = $m; $i <= $n; $i+= $istep) { | |
$j = $i + $mmax; | |
$tempr = $wr * $data[$j] - $wi * $data[($j+1)]; | |
$tempi = $wr * $data[($j+1)] + $wi * $data[$j]; | |
$data[$j] = $data[$i] - $tempr; | |
$data[($j+1)] = $data[($i+1)] - $tempi; | |
$data[$i] += $tempr; | |
$data[($i+1)] += $tempi; | |
} | |
$wtemp = $wr; | |
$wr = ($wr * $wpr) - ($wi * $wpi) + $wr; | |
$wi = ($wi * $wpr) + ($wtemp * $wpi) + $wi; | |
} | |
$mmax = $istep; | |
} | |
for ($i = 1; $i < count($data); $i++) { | |
$data[$i] *= sqrt(2/$n); # Normalize the data | |
if (abs($data[$i]) < 1E-8) $data[$i] = 0; # Let's round small numbers to zero | |
$input[($i-1)] = $data[$i]; # We need to shift array back (see beginning) | |
} | |
return $input; | |
} |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment
@mbijon @binkleym
It looks like this function is not working properly.
I've skipped the normalization to compare results with NumPy FFT
//$data[$i] *= sqrt(2/$n);
for example:
and numpy:
[24.+18.j 4. -2.j -4. +2.j -8.-10.j]
All result values (except those in the beginning and in the middle) are wrong.
Only if there are 4 or less values in the array (2 or less complex numbers) there are no errors.