Last active
October 11, 2022 10:10
-
-
Save mbillingr/b342e3d34f1ff20da93887dca4f163a4 to your computer and use it in GitHub Desktop.
Simple Lambda calculus evaluator in Idris
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
-- evaluation using environments | |
mutual | |
data Lc = Ident String | |
| Lambda String Lc | |
| Call Lc Lc | |
| Closure Env String Lc | |
data Env = Empty | Entry String Lc Env | |
stringify : Lc -> String | |
stringify (Ident x) = x | |
stringify (Lambda x y) = "(lambda (" ++ x ++ ") " ++ (stringify y) ++ ")" | |
stringify (Call x y) = "(" ++ (stringify x) ++ " "++ (stringify y) ++ ")" | |
stringify (Closure x y z) = "<CLOSURE>" | |
eval : Lc -> Env -> Lc | |
eval (Ident i) Empty = Ident i | |
eval (Ident i) (Entry e v next) = if i == e then v | |
else eval (Ident i) next | |
eval (Lambda p b) env = Closure env p b | |
eval x@(Call f a) env = case eval f env of | |
(Closure cls p b) => eval b (Entry p (eval a env) cls) | |
_ => x | |
eval x _ = x |
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
-- evaluation using substitution | |
mutual | |
data Lc = Ident String | |
| Lambda String Lc | |
| Call Lc Lc | |
data Env = Empty | Entry String Lc Env | |
stringify : Lc -> String | |
stringify (Ident x) = x | |
stringify (Lambda x y) = "(lambda (" ++ x ++ ") " ++ (stringify y) ++ ")" | |
stringify (Call x y) = "(" ++ (stringify x) ++ " "++ (stringify y) ++ ")" | |
substitute : String -> Lc -> Lc -> Lc | |
substitute x v (Ident y) = if x == y then v | |
else (Ident y) | |
substitute x v (Lambda p b) = if x == p then (Lambda p b) | |
else (Lambda p (substitute x v b)) | |
substitute x v (Call f a) = (Call (substitute x v f) (substitute x v a)) | |
eval : Lc -> Lc | |
eval (Call (Ident x) a) = Call (Ident x) (eval a) | |
eval (Call (Lambda p b) a) = eval (substitute p a b) | |
eval (Call f a) = eval (Call (eval f) (eval a)) | |
eval x = x |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment