Skip to content

Instantly share code, notes, and snippets.

@mbjoseph
Last active December 9, 2020 17:06
Show Gist options
  • Save mbjoseph/5852613 to your computer and use it in GitHub Desktop.
Save mbjoseph/5852613 to your computer and use it in GitHub Desktop.
Slight change to the vioplot function from Daniel Adler that plots median lines instead of points, and gives the option to plot either side of a violin rather than always both.
vioplot2 <- function (x, ..., range = 1.5, h = NULL, ylim = NULL, names = NULL,
horizontal = FALSE, col = "magenta", border = "black", lty = 1,
lwd = 1, rectCol = "black", colMed = "white", pchMed = 19,
at, add = FALSE, wex = 1, drawRect = TRUE, side="both")
{
datas <- list(x, ...)
n <- length(datas)
if (missing(at))
at <- 1:n
upper <- vector(mode = "numeric", length = n)
lower <- vector(mode = "numeric", length = n)
q1 <- vector(mode = "numeric", length = n)
q2 <- vector(mode = "numeric", length = n)
q3 <- vector(mode = "numeric", length = n)
med <- vector(mode = "numeric", length = n)
base <- vector(mode = "list", length = n)
height <- vector(mode = "list", length = n)
baserange <- c(Inf, -Inf)
args <- list(display = "none")
radj <- ifelse(side == "right", 0, 1)
ladj <- ifelse(side == "left", 0, 1)
if (!(is.null(h)))
args <- c(args, h = h)
med.dens <- rep(NA, n)
for (i in 1:n) {
data <- datas[[i]]
data.min <- min(data)
data.max <- max(data)
q1[i] <- quantile(data, 0.25)
q2[i] <- quantile(data, 0.5)
q3[i] <- quantile(data, 0.75)
med[i] <- median(data)
iqd <- q3[i] - q1[i]
upper[i] <- min(q3[i] + range * iqd, data.max)
lower[i] <- max(q1[i] - range * iqd, data.min)
est.xlim <- c(min(lower[i], data.min), max(upper[i],
data.max))
smout <- do.call("sm.density", c(list(data, xlim = est.xlim),
args))
med.dat <- do.call("sm.density",
c(list(data, xlim=est.xlim,
eval.points=med[i], display = "none")))
med.dens[i] <- med.dat$estimate
hscale <- 0.4/max(smout$estimate) * wex
base[[i]] <- smout$eval.points
height[[i]] <- smout$estimate * hscale
med.dens[i] <- med.dens[i] * hscale
t <- range(base[[i]])
baserange[1] <- min(baserange[1], t[1])
baserange[2] <- max(baserange[2], t[2])
}
if (!add) {
xlim <- if (n == 1)
at + c(-0.5, 0.5)
else range(at) + min(diff(at))/2 * c(-1, 1)
if (is.null(ylim)) {
ylim <- baserange
}
}
if (is.null(names)) {
label <- 1:n
}
else {
label <- names
}
boxwidth <- 0.05 * wex
if (!add)
plot.new()
if (!horizontal) {
if (!add) {
plot.window(xlim = xlim, ylim = ylim)
axis(2)
axis(1, at = at, label = label)
}
box()
for (i in 1:n) {
polygon(x = c(at[i] - radj*height[[i]], rev(at[i] + ladj*height[[i]])),
y = c(base[[i]], rev(base[[i]])),
col = col, border = border,
lty = lty, lwd = lwd)
if (drawRect) {
lines(at[c(i, i)], c(lower[i], upper[i]), lwd = lwd,
lty = lty)
rect(at[i] - radj*boxwidth/2,
q1[i],
at[i] + ladj*boxwidth/2,
q3[i], col = rectCol)
# median line segment
lines(x = c(at[i] - radj*med.dens[i],
at[i],
at[i] + ladj*med.dens[i]),
y = rep(med[i],3))
}
}
}
else {
if (!add) {
plot.window(xlim = ylim, ylim = xlim)
axis(1)
axis(2, at = at, label = label)
}
box()
for (i in 1:n) {
polygon(c(base[[i]], rev(base[[i]])),
c(at[i] - radj*height[[i]], rev(at[i] + ladj*height[[i]])),
col = col, border = border,
lty = lty, lwd = lwd)
if (drawRect) {
lines(c(lower[i], upper[i]), at[c(i, i)], lwd = lwd,
lty = lty)
rect(q1[i], at[i] - radj*boxwidth/2, q3[i], at[i] +
ladj*boxwidth/2, col = rectCol)
lines(y = c(at[i] - radj*med.dens[i],
at[i],
at[i] + ladj*med.dens[i]),
x = rep(med[i],3))
}
}
}
invisible(list(upper = upper, lower = lower, median = med,
q1 = q1, q3 = q3))
}
@garthj88
Copy link

Just wanted to say thanks for the code, it's helped me in cases similar to boxplot(x~y|z) -- (still would love to have variable widths proportional to group sizes, but I guess it doesn't really work for the violin's densities).

@lestberg
Copy link

Thank you, this is very useful for my projects.

@TomKellyGenetics
Copy link

If anyone's interested in this functionality, I've wrapped it in a package with some additional functionality: https://github.com/TomKellyGenetics/vioplotx

This is backwards compatible with inputs to vioplot and boxplot. Looking into submission to CRAN as well.

Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment