Last active
April 27, 2016 02:09
-
-
Save mbk0asis/7584361473682f449742f6453f7e10cc to your computer and use it in GitHub Desktop.
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
library(DESeq) | |
library(LSD) | |
library(ggplot2) | |
library(gridExtra) | |
library(RColorBrewer) | |
# open a count file | |
setwd('/home/bio1/00-NGS/RNAseq/bov/GSE44023_Chitwood_et_al/DESeq') | |
setwd('/home/bio1/00-NGS/Cancers/cancer_met_Kyuheum') | |
countsTable<- read.csv("final.final.csv",row.names=1) | |
countsTable <- read.delim("/home/bio2/00-NGS/Hairpin/Bismark_results/Read1_only/All.genomecov.intersect.txt",row.names=1) | |
head(countsTable) | |
colnames(countsTable) = c("MEF","P0","P1","P2","P6","J1") | |
head(countsTable) | |
conds<- factor(c("Biliary","Biliary","Biliary","Biliary","Biliary","Biliary", | |
"Other","Other","Other","Other","Other","Other","Other","Other","Other","Other", | |
"Other","Other","Other","Other","Other","Other","Other","Other","Other","Other", | |
"Other","Other","Other","Other","Other","Other","Other","Other","Other","Other", | |
"Other","Other","Other","Other","Other","Other","Other","Other","Other","Other", | |
"Other","Other","Other","Other","Other","Other","Other","Other","Other","Other", | |
"Other","Other","Other","Other","Other","Other","Other","Other","Other","Other", | |
"Other","Other","Other","Other","Other","Other","Other","Other","Other","Other", | |
"Other","Other","Other","Other","Other","Other","Other","Other","Other","Other", | |
"Other","Other","Other","Other","Other","Other")) | |
conds<- factor(c("IVF","IVF","IVF", | |
"cSCNT","cSCNT","cSCNT","cSCNT", | |
"fSCNT","fSCNT","fSCNT","fSCNT", | |
"TSA_IVF","TSA_SCNT","BM","BF")) | |
heatboxplot(log2(countsTable[,1:2]+1),ylim=c(-0.3,20), notch=TRUE,boxonly=F, | |
ylab = "log2 counts", main = "Count Distribution") | |
# Define column names | |
#colnames(countsTable) = c("geneSymbol","MI-1","MI-2","MI-3","MI-4","MI-5","MI-6", | |
"MN-1","MN-2","MN-3","MN-4","MN-5","MN-6", | |
"MS-1","MS-2","MS-3","MS-4","MS-5","MS-6", | |
"FI-1","FI-2","FI-3","FI-4","FI-5","FI-6", | |
"FN-1","FN-2","FN-3","FN-4","FN-5","FN-6", | |
"FS-1","FS-2","FS-3","FS-4","FS-5" | |
,"BM","BF") | |
#head(countsTable) | |
# Define conditons of each column (sample) | |
conds<- factor(c("MI","MI","MI","MI","MI","MI", | |
"MN","MN","MN","MN","MN","MN", | |
"MS","MS","MS","MS","MS","MS", | |
"FI","FI","FI","FI","FI","FI", | |
"FN","FN","FN","FN","FN","FN", | |
"FS","FS","FS","FS","FS", | |
"BM","BF")) | |
conds<- factor(c("MI","MI","MI","MI","MI","MI", | |
"MN","MN","MN","MN","MN","MN", | |
"FI","FI","FI","FI","FI","FI", | |
"FN","FN","FN","FN","FN","FN", | |
"BM","BF")) | |
# Set up cds (count data set) | |
cds <- newCountDataSet(countsTable,conds) | |
head(cds) | |
# Estimate sample size of each sample | |
cds <- estimateSizeFactors(cds) | |
sizeFactors(cds) | |
write.table(sizeFactors(cds),'/home/bio1/00-NGS//RNAseq//bov//niceM//DESeq/sizeFactor.txt') | |
countsNormalized <- counts(cds,normalized=T) | |
head(countsNormalized) | |
write.csv(countsNormalized,"cntNorm_Old.TSA.BESF.csv") | |
# Heatscatter plots | |
heatboxplot(log2(countsNormalized+1),ylim=c(-0.3,20), notch=TRUE,boxonly=F, | |
ylab = "log2 counts", main = "Count Normalized Distribution") | |
# scatter plot - individuals | |
heatscatter(log2(countsNormalized[,36]),log2(countsNormalized[,14]), | |
xlab="BM (log2 expression)",ylab="MS_2 (log2 expression)", | |
cor = TRUE, method = "spearman", | |
xlim=c(-0.5,17),ylim=c(-0.5,17)) | |
abline(-1,1,col="black",lwd=2) | |
abline(1,1,col="black",lwd=2) | |
identify(log(countsNormalized[,1]),log(countsNormalized[,2]),labels=names(countsNormalized[,1])) | |
#################################################### | |
# Scatter plots (ggplot2) | |
head(countsNormalized) | |
p <- qplot(log2(countsNormalized[ ,5]+1),log2(countsNormalized[ ,3]+1),xlab="TSA(+) SCNT", ylab="TSA(-) SCNT") | |
p + geom_smooth(method="lm", formula = y ~ x,se=F) + geom_abline(intercept = 0,linetype="dotted") + geom_point(size=2, alpha=0.1) + coord_flip() #+ stat_smooth_func(geom="text",method="lm",hjust=0,parse=TRUE) | |
# Stat Smooth Function | |
library(proto) | |
stat_smooth_func <- function (mapping = NULL, data = NULL, geom = "smooth", position = "identity", | |
method = "auto", formula = y ~ x, se = TRUE, n = 80, fullrange = FALSE, | |
level = 0.95, na.rm = FALSE, ...) { | |
StatSmoothFunc$new(mapping = mapping, data = data, geom = geom, position = position, | |
method = method, formula = formula, se = se, n = n, fullrange = fullrange, | |
level = level, na.rm = na.rm, ...) | |
} | |
StatSmoothFunc <- proto(ggplot2:::Stat, { | |
objname <- "smooth" | |
calculate_groups <- function(., data, scales, method="auto", formula=y~x, ...) { | |
rows <- daply(data, .(group), function(df) length(unique(df$x))) | |
if (all(rows == 1) && length(rows) > 1) { | |
message("geom_smooth: Only one unique x value each group.", | |
"Maybe you want aes(group = 1)?") | |
return(data.frame()) | |
} | |
# Figure out what type of smoothing to do: loess for small datasets, | |
# gam with a cubic regression basis for large data | |
# This is based on the size of the _largest_ group. | |
if (identical(method, "auto")) { | |
groups <- count(data, "group") | |
if (max(groups$freq) < 1000) { | |
method <- "loess" | |
message('geom_smooth: method="auto" and size of largest group is <1000,', | |
' so using loess.', | |
' Use \'method = x\' to change the smoothing method.') | |
} else { | |
method <- "gam" | |
formula <- y ~ s(x, bs = "cs") | |
message('geom_smooth: method="auto" and size of largest group is >=1000,', | |
' so using gam with formula: y ~ s(x, bs = "cs").', | |
' Use \'method = x\' to change the smoothing method.') | |
} | |
} | |
if (identical(method, "gam")) try_require("mgcv") | |
.super$calculate_groups(., data, scales, method = method, formula = formula, ...) | |
} | |
calculate <- function(., data, scales, method="auto", formula=y~x, se = TRUE, n=80, fullrange=FALSE, xseq = NULL, level=0.95, na.rm = FALSE, ...) { | |
data <- remove_missing(data, na.rm, c("x", "y"), name="stat_smooth") | |
if (length(unique(data$x)) < 2) { | |
# Not enough data to perform fit | |
return(data.frame()) | |
} | |
if (is.null(data$weight)) data$weight <- 1 | |
if (is.null(xseq)) { | |
if (is.integer(data$x)) { | |
if (fullrange) { | |
xseq <- scale_dimension(scales$x, c(0, 0)) | |
} else { | |
xseq <- sort(unique(data$x)) | |
} | |
} else { | |
if (fullrange) { | |
range <- scale_dimension(scales$x, c(0, 0)) | |
} else { | |
range <- range(data$x, na.rm=TRUE) | |
} | |
xseq <- seq(range[1], range[2], length=n) | |
} | |
} | |
if (is.character(method)) method <- match.fun(method) | |
method.special <- function(...) | |
method(formula, data=data, weights=weight, ...) | |
model <- safe.call(method.special, list(...), names(formals(method))) | |
predictdf(model, xseq, se, level) | |
m = model | |
eq <- substitute(italic(y) == a + b %.% italic(x)*","~~italic(r)^2~"="~r2, | |
list(a = format(coef(m)[1], digits = 3), | |
b = format(coef(m)[2], digits = 3), | |
r2 = format(summary(m)$r.squared, digits = 3))) | |
func_string = as.character(as.expression(eq)) | |
data.frame(x=min(data$x)*0.9, y=max(data$y)*0.9, label=func_string) | |
} | |
required_aes <- c("x", "y") | |
default_geom <- function(.) GeomSmooth | |
}) | |
################################################################################### | |
# Estimate dispersion | |
cds <- estimateDispersions(cds) | |
cds <- estimateDispersions(cds, method = "blind", fitType = "local", sharingMode = "fit-only") # for individual comparison | |
plotDispEsts(cds) | |
#plotPCA | |
vsd <- varianceStabilizingTransformation(cds) | |
plotPCA(vsd,ntop = 10000) | |
# source code for 'plotPCA' | |
plotPCA = function(x, intgroup, ntop=500) | |
{ | |
require("lattice") | |
require("genefilter") | |
rv = rowVars(exprs(x)) | |
select = order(rv, decreasing=TRUE)[seq_len(ntop)] | |
pca = prcomp(t(exprs(x)[select,])) | |
fac = factor(apply(pData(vsdFull)[, intgroup], 1, paste, collapse=": ")) | |
colours = brewer.pal(nlevels(fac), "Paired") # colors of points | |
pcafig = xyplot(PC2 ~ PC1, groups=fac, data=as.data.frame(pca$x), pch=16, cex=2, # can change shapes & sizes of points | |
aspect = "iso", col=colours, | |
main = draw.key(key = list( | |
rect = list(col = colours), | |
text = list(levels(fac)), | |
rep = FALSE))) | |
} | |
plotPCA(vsd) | |
################################################################## | |
### MI_vs_MN ##################################################### | |
################################################################## | |
result_MI_MN = nbinomTest(cds,"MI","MN") | |
result_MI_MN = result_MI_MN[order(result_MI_MN$pval), ] | |
#write.csv(result_MI_MN,"/home/bio1/00-NGS//RNAseq//bov//niceM//DESeq/DESeq_MI_MN.csv") | |
## Histogram of p-val distribution | |
# hist(result_MI_MN$pval, breaks=100, col="skyblue",border="slateblue",main="",xlab="p-value", ylab="Frequency") | |
## MA plot | |
with(IVF_TSA, plot(log10(baseMean),log2FoldChange,pch=20,main="MA plot - IVF_TSA",col="lightgrey")) | |
with(subset(IVF_TSA, pval<.05), points(log10(baseMean),log2FoldChange,pch=20, col="red")) | |
abline(h=c(-1,1),col="blue") | |
#volcano plot | |
with(IVF_TSA, plot(log2FoldChange,-log10(pval),pch=19,main="Volcano plot - IVF_TSA",col="lightgrey")) | |
with(subset(IVF_TSA, pval<.05 & abs(log2FoldChange)>1), points(log2FoldChange, -log10(pval), pch=20, col="red")) | |
abline(v=c(-1,1),col="blue") | |
# Label points with the textxy function from the calibrate plot | |
library(calibrate) | |
with(subset(IVF_TSA, -log10(pval)>40 & abs(log2FoldChange)>5), textxy(log2FoldChange, -log10(pval), labs=id, offset=-0.5,cex=.7)) | |
################################################################## | |
### MI_vs_MS ##################################################### | |
################################################################## | |
result_MI_MS = nbinomTest(cds,"MI","MS") | |
result_MI_MS = result_MI_MS[order(result_MI_MS$pval), ] | |
#write.csv(result_MI_MS,"/home/bio1/00-NGS//RNAseq//bov//niceM//DESeq/DESeq_MI_MS.csv") | |
# Histogram of p-val distribution | |
# hist(result_MI_MS$pval, breaks=100, col="skyblue",border="slateblue",main="",xlab="p-value", ylab="Frequency") | |
# MA plot | |
plot( | |
result_MI_MS$baseMean, | |
result_MI_MS$log2FoldChange, | |
log="x",pch=20,cex=.7, | |
col=ifelse(result_MI_MS$pval < .05 ,"red","grey"), | |
xlab="BaseMean", ylab="FoldChange" | |
) | |
abline(h=c(-1,1),col="blue") | |
################################################################## | |
### MS_vs_MN ##################################################### | |
################################################################## | |
result_MS_MN = nbinomTest(cds,"MS","MN") | |
result_MS_MN = result_MS_MN[order(result_MS_MN$pval), ] | |
#write.csv(result_MS_MN,"/home/bio1/00-NGS//RNAseq//bov//niceM//DESeq/DESeq_MS_MN.csv") | |
# Histogram of p-val distribution | |
# hist(result_MI_MS$pval, breaks=100, col="skyblue",border="slateblue",main="",xlab="p-value", ylab="Frequency") | |
# MA plot | |
plot( | |
result_MS_MN$baseMean, | |
result_MS_MN$log2FoldChange, | |
log="x",pch=20,cex=.7, | |
col=ifelse(result_MS_MN$pval < .05 ,"red","grey"), | |
xlab="BaseMean", ylab="FoldChange" | |
) | |
abline(h=c(-1,1),col="blue") | |
################################################################## | |
### FI_vs_FN ##################################################### | |
################################################################## | |
result_FI_FN = nbinomTest(cds,"FI","FN") | |
result_FI_FN = result_FI_FN[order(result_FI_FN$pval), ] | |
#write.csv(result_FI_FN,"/home/bio1/00-NGS//RNAseq//bov//niceM//DESeq/DESeq_FI_FN.csv") | |
# Histogram of p-val distribution | |
# hist(result_FI_FN$pval, breaks=100, col="skyblue",border="slateblue",main="",xlab="p-value", ylab="Frequency") | |
# MA plot | |
plot( | |
result_FI_FN$baseMean, | |
result_FI_FN$log2FoldChange, | |
log="x",pch=20,cex=.7, | |
col=ifelse(result_FI_FN$pval < .05 ,"red","grey"), | |
xlab="BaseMean", ylab="FoldChange" | |
) | |
abline(h=c(-1,1),col="blue") | |
################################################################## | |
### FI_vs_FS ##################################################### | |
################################################################## | |
result_FI_FS = nbinomTest(cds,"FI","FS") | |
result_FI_FS = result_FI_FS[order(result_FI_FS$pval), ] | |
write.csv(result_FI_FS,"/home/bio1/00-NGS//RNAseq//bov//niceM//DESeq/DESeq_FI_FS.csv") | |
# Histogram of p-val distribution | |
# hist(result_FI_FS$pval, breaks=100, col="skyblue",border="slateblue",main="",xlab="p-value", ylab="Frequency") | |
# MA plot | |
plot( | |
result_FI_FS$baseMean, | |
result_FI_FS$log2FoldChange, | |
log="x",pch=20,cex=.7, | |
col=ifelse(result_FI_FS$pval < .05 ,"red","grey"), | |
xlab="BaseMean", ylab="FoldChange" | |
) | |
abline(h=c(-1,1),col="blue") | |
################################################################## | |
### FS_vs_FN ##################################################### | |
################################################################## | |
result_FS_FN = nbinomTest(cds,"FS","FN") | |
result_FS_FN = result_FS_FN[order(result_FS_FN$pval), ] | |
write.csv(result_FS_FN,"/home/bio1/00-NGS//RNAseq//bov//niceM//DESeq/DESeq_FS_FN.csv") | |
# Histogram of p-val distribution | |
# hist(result_FS_FN$pval, breaks=100, col="skyblue",border="slateblue",main="",xlab="p-value", ylab="Frequency") | |
# MA plot | |
plot( | |
result_FS_FN$baseMean, | |
result_FS_FN$log2FoldChange, | |
log="x",pch=20,cex=.7, | |
col=ifelse(result_FS_FN$pval < .05 ,"red","grey"), | |
xlab="BaseMean", ylab="FoldChange" | |
) | |
abline(h=c(-1,1),col="blue") | |
################################################################## | |
### MI_vs_FI ##################################################### | |
################################################################## | |
result_MI_FI = nbinomTest(cds,"MI","FI") | |
result_MI_FI = result_MI_FI[order(result_MI_FI$pval), ] | |
write.csv(result_MI_FI,"/home/bio1/00-NGS//RNAseq//bov//niceM//DESeq/DESeq_MI_FI.csv") | |
# Histogram of p-val distribution | |
# hist(result_FS_FN$pval, breaks=100, col="skyblue",border="slateblue",main="",xlab="p-value", ylab="Frequency") | |
# MA plot | |
plot( | |
result_MI_FI$baseMean, | |
result_MI_FI$log2FoldChange, | |
log="x",pch=20,cex=.7, | |
col=ifelse(result_MI_FI$pval < .05 ,"red","grey"), | |
xlab="BaseMean", ylab="FoldChange" | |
) | |
abline(h=c(-1,1),col="blue") | |
################################################################## | |
### MN_vs_FN ##################################################### | |
################################################################## | |
result_MN_FN = nbinomTest(cds,"MN","FN") | |
result_MN_FN = result_MN_FN[order(result_MN_FN$pval), ] | |
write.csv(result_MN_FN,"/home/bio1/00-NGS//RNAseq//bov//niceM//DESeq/DESeq_MN_FN.csv") | |
# Histogram of p-val distribution | |
# hist(result_FS_FN$pval, breaks=100, col="skyblue",border="slateblue",main="",xlab="p-value", ylab="Frequency") | |
# MA plot | |
plot( | |
result_MN_FN$baseMean, | |
result_MN_FN$log2FoldChange, | |
log="x",pch=20,cex=.7, | |
col=ifelse(result_MN_FN$pval < .05 ,"red","grey"), | |
xlab="BaseMean", ylab="FoldChange" | |
) | |
abline(h=c(-1,1),col="blue") | |
################################################################## | |
### MS_vs_FS ##################################################### | |
################################################################## | |
result_MS_FS = nbinomTest(cds,"MS","FS") | |
result_MS_FS = result_MS_FS[order(result_MS_FS$pval), ] | |
write.csv(result_MS_FS,"/home/bio1/00-NGS//RNAseq//bov//niceM//DESeq/DESeq_MS_FS.csv") | |
# Histogram of p-val distribution | |
# hist(result_FS_FN$pval, breaks=100, col="skyblue",border="slateblue",main="",xlab="p-value", ylab="Frequency") | |
# MA plot | |
plot( | |
result_MS_FS$baseMean, | |
result_MS_FS$log2FoldChange, | |
log="x",pch=20,cex=.7, | |
col=ifelse(result_MS_FS$pval < .05 ,"red","grey"), | |
xlab="BaseMean", ylab="FoldChange" | |
) | |
abline(h=c(-1,1),col="blue") | |
## END ########################################################## | |
##################################################################### | |
## Merge DESeq_results + cntNorm ## | |
## Extract rows with p <0.05 ## | |
##################################################################### | |
cntNorm <- read.csv('~/00-NGS//RNAseq//bov//niceM//DESeq/cntNorm_ALL.csv') | |
head(cntNorm) | |
nrow(cntNorm) | |
# within Males | |
MI_MN.merged <- merge(x=result_MI_MN, y=cntNorm, by.x="id", by.y="geneSymbol") | |
MI_MN.merged.p05 <- MI_MN.merged[MI_MN.merged$pval < 0.05, ] | |
MI_MN.merged.p05 = MI_MN.merged.p05[order(MI_MN.merged.p05$pval), ] | |
nrow(MI_MN.merged.p05) | |
write.table(MI_MN.merged.p05,"~/00-NGS//RNAseq/bov/niceM/DESeq/MI_MN.merged.p05") | |
MI_MS.merged <- merge(x=result_MI_MS, y=cntNorm, by.x="id", by.y="geneSymbol") | |
MI_MS.merged.p05 <- MI_MS.merged[MI_MS.merged$pval < 0.05, ] | |
MI_MS.merged.p05 = MI_MS.merged.p05[order(MI_MS.merged.p05$pval), ] | |
nrow(MI_MS.merged.p05) | |
write.table(MI_MS.merged.p05,"~/00-NGS//RNAseq/bov/niceM/DESeq/MI_MS.merged.p05") | |
MS_MN.merged <- merge(x=result_MS_MN, y=cntNorm, by.x="id", by.y="geneSymbol") | |
MS_MN.merged.p05 <- MS_MN.merged[MS_MN.merged$pval < 0.05, ] | |
MS_MN.merged.p05 = MS_MN.merged.p05[order(MS_MN.merged.p05$pval), ] | |
nrow(MS_MN.merged.p05) | |
write.table(MS_MN.merged.p05,"~/00-NGS//RNAseq/bov/niceM/DESeq/MS_MN.merged.p05") | |
# within Females | |
FI_FN.merged <- merge(x=result_FI_FN, y=cntNorm, by.x="id", by.y="geneSymbol") | |
FI_FN.merged.p05 <- FI_FN.merged[FI_FN.merged$pval < 0.05, ] | |
FI_FN.merged.p05 = FI_FN.merged.p05[order(FI_FN.merged.p05$pval), ] | |
nrow(FI_FN.merged.p05) | |
write.table(FI_FN.merged.p05,"~/00-NGS//RNAseq/bov/niceM/DESeq/FI_FN.merged.p05") | |
FI_FS.merged <- merge(x=result_FI_FS, y=cntNorm, by.x="id", by.y="geneSymbol") | |
FI_FS.merged.p05 <- FI_FS.merged[FI_FS.merged$pval < 0.05, ] | |
FI_FS.merged.p05 = FI_FS.merged.p05[order(FI_FS.merged.p05$pval), ] | |
nrow(FI_FS.merged.p05) | |
write.table(FI_FS.merged.p05,"~/00-NGS//RNAseq/bov/niceM/DESeq/FI_FS.merged.p05") | |
FS_FN.merged <- merge(x=result_FS_FN, y=cntNorm, by.x="id", by.y="geneSymbol") | |
FS_FN.merged.p05 <- FS_FN.merged[FS_FN.merged$pval < 0.05, ] | |
FS_FN.merged.p05 = FS_FN.merged.p05[order(FS_FN.merged.p05$pval), ] | |
nrow(FS_FN.merged.p05) | |
write.table(FS_FN.merged.p05,"~/00-NGS//RNAseq/bov/niceM/DESeq/FS_FN.merged.p05") | |
## Male vs Female | |
MI_FI.merged <- merge(x=result_MI_FI, y=cntNorm, by.x="id", by.y="geneSymbol") | |
MI_FI.merged.p05 <- MI_FI.merged[MI_FI.merged$pval < 0.05, ] | |
MI_FI.merged.p05 = MI_FI.merged.p05[order(MI_FI.merged.p05$pval), ] | |
nrow(MI_FI.merged.p05) | |
write.table(MI_FI.merged.p05,"~/00-NGS//RNAseq/bov/niceM/DESeq/MI_FI.merged.p05") | |
MN_FN.merged <- merge(x=result_MN_FN, y=cntNorm, by.x="id", by.y="geneSymbol") | |
MN_FN.merged.p05 <- MN_FN.merged[MN_FN.merged$pval < 0.05, ] | |
MN_FN.merged.p05 = MN_FN.merged.p05[order(MN_FN.merged.p05$pval), ] | |
nrow(MN_FN.merged.p05) | |
write.table(MN_FN.merged.p05,"~/00-NGS//RNAseq/bov/niceM/DESeq/MN_FN.merged.p05") | |
MS_FS.merged <- merge(x=result_MS_FS, y=cntNorm, by.x="id", by.y="geneSymbol") | |
MS_FS.merged.p05 <- MS_FS.merged[MS_FS.merged$pval < 0.05, ] | |
MS_FS.merged.p05 = MS_FS.merged.p05[order(MS_FS.merged.p05$pval), ] | |
nrow(MS_FS.merged.p05) | |
write.table(MS_FS.merged.p05,"~/00-NGS//RNAseq/bov/niceM/DESeq/MS_FS.merged.p05") | |
############################################################# | |
## Male Common DEGs ## | |
############################################################# | |
MI_MN.MI_MS.merged <- merge(x=result_MI_MN, y=result_MI_MN, by.x="id", by.y="id") | |
MI_MN_MS.merged <- merge(x=MI_MN.MI_MS.merged, y=result_MS_MN, by.x="id", by.y="id") | |
common_DEG_Male <- MI_MN_MS.merged[MI_MN_MS.merged$pval.x < 0.05, ] | |
common_DEG_Male <- common_DEG_Male[common_DEG_Male$pval.y < 0.05, ] | |
common_DEG_Male <- common_DEG_Male[common_DEG_Male$pval < 0.05, ] | |
write.table(common_DEG_Male,'~/00-NGS//RNAseq//bov//niceM//DESeq/commonDEG_Male_p05.txt') | |
############################################################# | |
## Feale Common DEGs ## | |
############################################################# | |
FI_FN.FI_FS.merged <- merge(x=result_FI_FN, y=result_FI_FN, by.x="id", by.y="id") | |
FI_FN_FS.merged <- merge(x=FI_FN.FI_FS.merged, y=result_FS_FN, by.x="id", by.y="id") | |
common_DEG_Female <- FI_FN_FS.merged[FI_FN_FS.merged$pval.x < 0.05, ] | |
common_DEG_Female <- common_DEG_Female[common_DEG_Female$pval.y < 0.05, ] | |
common_DEG_Female <- common_DEG_Female[common_DEG_Female$pval < 0.05, ] | |
write.table(common_DEG_Female,'~/00-NGS//RNAseq//bov//niceM//DESeq/commonDEG_Female_p05.txt') |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment