|
import sharp, { |
|
Sharp, |
|
Metadata, |
|
Kernel, |
|
Color, |
|
OverlayOptions, |
|
Raw, |
|
} from "sharp"; |
|
// Assuming 'color-string' library is installed |
|
import colorString from "color-string"; |
|
|
|
// --- Type Definitions --- |
|
|
|
interface MaskInfo { |
|
width: number; |
|
height: number; |
|
channels: number; // Should always be 1 for grayscale mask data |
|
size: number; |
|
} |
|
|
|
interface Dimensions { |
|
imgHeight: number; |
|
imgWidth: number; |
|
} |
|
|
|
// Simplified structure for the input JSON items |
|
interface InputMaskItem { |
|
box_2d: [number, number, number, number]; // [y0, x0, y1, x1] as percentages (0-1000) |
|
mask: string; // Base64 encoded PNG string "data:image/png;base64,..." |
|
label?: string; |
|
} |
|
|
|
// --- 1. SegmentationMask Class --- |
|
/** |
|
* Represents a segmentation mask with its bounding box, label, |
|
* and raw mask pixel data (full image size, grayscale 0-255). |
|
*/ |
|
class SegmentationMask { |
|
readonly y0: number; |
|
readonly x0: number; |
|
readonly y1: number; |
|
readonly x1: number; |
|
readonly maskData: Buffer; // Full-size grayscale mask buffer |
|
readonly maskInfo: MaskInfo; // { width, height, channels: 1, size } |
|
readonly label: string; |
|
|
|
/** |
|
* Creates an instance of SegmentationMask. |
|
* @param {number} y0 - Top bounding box pixel coordinate (inclusive). |
|
* @param {number} x0 - Left bounding box pixel coordinate (inclusive). |
|
* @param {number} y1 - Bottom bounding box pixel coordinate (inclusive). |
|
* @param {number} x1 - Right bounding box pixel coordinate (inclusive). |
|
* @param {Buffer} maskData - Buffer containing raw *full-size* grayscale mask data (0-255). |
|
* @param {MaskInfo} maskInfo - Metadata about the mask buffer ({width, height, channels: 1}). |
|
* @param {string} label - The label associated with the mask. |
|
*/ |
|
constructor( |
|
y0: number, |
|
x0: number, |
|
y1: number, |
|
x1: number, |
|
maskData: Buffer, |
|
maskInfo: MaskInfo, |
|
label: string |
|
) { |
|
this.y0 = y0; |
|
this.x0 = x0; |
|
this.y1 = y1; |
|
this.x1 = x1; |
|
this.maskData = maskData; |
|
this.maskInfo = maskInfo; |
|
this.label = label; |
|
Object.freeze(this); // Make instance immutable |
|
} |
|
} |
|
|
|
// --- 2. parseSegmentationMasks Function --- |
|
/** |
|
* Parses an array of prediction items containing segmentation data and extracts full-size masks. |
|
* |
|
* @async |
|
* @param {InputMaskItem[]} items - Array of raw prediction objects. |
|
* @param {Dimensions} dimensions - Image dimensions { imgHeight, imgWidth }. |
|
* @returns {Promise<SegmentationMask[]>} A promise resolving to an array of SegmentationMask objects. |
|
*/ |
|
async function parseSegmentationMasks( |
|
items: InputMaskItem[], |
|
{ imgHeight, imgWidth }: Dimensions |
|
): Promise<SegmentationMask[]> { |
|
if (!imgHeight || !imgWidth || imgHeight <= 0 || imgWidth <= 0) { |
|
throw new Error("imgHeight and imgWidth must be positive numbers."); |
|
} |
|
|
|
const masks: SegmentationMask[] = []; |
|
|
|
for (const item of items) { |
|
try { |
|
// Basic validation of item structure |
|
if ( |
|
!item || |
|
typeof item !== "object" || |
|
!Array.isArray(item.box_2d) || |
|
item.box_2d.length !== 4 || |
|
typeof item.mask !== "string" |
|
) { |
|
console.warn( |
|
"Skipping item with invalid structure or missing mask:", |
|
item |
|
); |
|
continue; |
|
} |
|
|
|
// Calculate absolute bounding box coordinates from percentages (0-1000) |
|
const absY0 = Math.floor((item.box_2d[0] / 1000) * imgHeight); |
|
const absX0 = Math.floor((item.box_2d[1] / 1000) * imgWidth); |
|
const absY1 = Math.ceil((item.box_2d[2] / 1000) * imgHeight); // Use ceil for end points for inclusivity? Check consistency. |
|
const absX1 = Math.ceil((item.box_2d[3] / 1000) * imgWidth); // Use ceil for end points |
|
|
|
// Validate bounding box coordinates relative to each other and image bounds |
|
if ( |
|
absY0 >= absY1 || |
|
absX0 >= absX1 || |
|
absY0 < 0 || |
|
absX0 < 0 || |
|
absY1 > imgHeight || // Use > because coordinates are 0-based index |
|
absX1 > imgWidth // Use > |
|
) { |
|
console.warn( |
|
`Skipping item with invalid bounding box coordinates relative to image bounds [${imgWidth}x${imgHeight}]:`, |
|
item.box_2d, |
|
`Calculated: (${absY0},${absX0},${absY1},${absX1})` |
|
); |
|
continue; |
|
} |
|
|
|
const bboxHeight = absY1 - absY0; |
|
const bboxWidth = absX1 - absX0; |
|
|
|
// Validate bounding box dimensions (must be at least 1x1) |
|
if (bboxHeight < 1 || bboxWidth < 1) { |
|
console.warn( |
|
"Skipping item with invalid bounding box dimensions (height/width < 1):", |
|
item.box_2d, |
|
`(${bboxWidth}x${bboxHeight})` |
|
); |
|
continue; |
|
} |
|
|
|
const label = item.label || "unknown"; |
|
const pngStr = item.mask; |
|
|
|
if (!pngStr.startsWith("data:image/png;base64,")) { |
|
console.warn( |
|
"Skipping item with invalid mask format (not base64 PNG):", |
|
label |
|
); |
|
continue; |
|
} |
|
|
|
// --- Decode and Process Mask --- |
|
const base64Data = pngStr.replace(/^data:image\/png;base64,/, ""); |
|
const pngBuffer = Buffer.from(base64Data, "base64"); |
|
|
|
// Resize the decoded PNG mask to fit the bounding box using cubic interpolation |
|
const resizedMaskSharp = sharp(pngBuffer) |
|
.resize(bboxWidth, bboxHeight, { |
|
kernel: sharp.kernel.cubic, // Use cubic interpolation |
|
}) |
|
.grayscale(); // Ensure it's grayscale |
|
|
|
const { data: resizedMaskBuffer, info: resizedMaskInfo } = |
|
await resizedMaskSharp.raw().toBuffer({ resolveWithObject: true }); |
|
|
|
if (resizedMaskInfo.channels !== 1) { |
|
console.warn( |
|
`Resized mask for ${label} has ${resizedMaskInfo.channels} channels, expected 1. Forcing grayscale.` |
|
); |
|
// Although we called .grayscale(), sharp might behave unexpectedly with odd inputs. |
|
// Re-process just in case. This is defensive. |
|
const { data: finalResizedData, info: finalResizedInfo } = await sharp( |
|
resizedMaskBuffer, |
|
{ raw: resizedMaskInfo } |
|
) |
|
.grayscale() |
|
.raw() |
|
.toBuffer({ resolveWithObject: true }); |
|
// Overwrite if re-processing occurred |
|
Object.assign(resizedMaskBuffer, finalResizedData); |
|
Object.assign(resizedMaskInfo, finalResizedInfo); |
|
} |
|
|
|
// Create a blank (black) full-size background mask (grayscale) |
|
// Pass create options directly to sharp constructor |
|
const backgroundMaskSharp = sharp({ |
|
create: { |
|
width: imgWidth, |
|
height: imgHeight, |
|
channels: 3, // Start with 3 channels for RGB background |
|
background: { r: 0, g: 0, b: 0 }, // Black RGB |
|
}, |
|
}).grayscale(); // Convert to grayscale |
|
|
|
// Composite the resized mask onto the blank background at the bbox location |
|
const { data: finalMaskData, info: finalMaskInfo } = |
|
await backgroundMaskSharp |
|
.composite([ |
|
{ |
|
input: resizedMaskBuffer, |
|
raw: { width: bboxWidth, height: bboxHeight, channels: 1 }, // Specify format of input buffer |
|
top: absY0, |
|
left: absX0, |
|
}, |
|
]) |
|
.raw() |
|
.toBuffer({ resolveWithObject: true }); // Get final buffer and info |
|
|
|
if (finalMaskInfo.channels !== 1) { |
|
throw new Error( |
|
`Composited final mask should be grayscale (1 channel) but has ${finalMaskInfo.channels}` |
|
); |
|
} |
|
|
|
// --- Create SegmentationMask instance --- |
|
const mask = new SegmentationMask( |
|
absY0, |
|
absX0, |
|
absY1, |
|
absX1, |
|
finalMaskData, // The full-size composited mask buffer |
|
{ |
|
// Ensure MaskInfo type compliance |
|
width: finalMaskInfo.width, |
|
height: finalMaskInfo.height, |
|
channels: finalMaskInfo.channels, |
|
size: finalMaskInfo.size, |
|
}, |
|
label |
|
); |
|
masks.push(mask); |
|
} catch (error) { |
|
console.error("Error processing item:", item, error); |
|
// Optionally re-throw or collect errors |
|
} |
|
} |
|
|
|
return masks; |
|
} |
|
|
|
// --- 3. overlayMaskOnImage Function --- |
|
/** |
|
* Overlays a single *full-size grayscale mask* onto an image using a named color and alpha. |
|
* Replicates the logic of Python's overlay_mask_on_img using manual alpha blending. |
|
* The returned sharp instance contains the image with the mask applied. |
|
* |
|
* @async |
|
* @param {Buffer | string | Sharp} imgInput - Base image (path, buffer, or sharp object). |
|
* @param {Buffer} maskData - Full-size grayscale mask buffer (0-255). |
|
* @param {MaskInfo} maskInfo - Metadata for maskData ({width, height, channels: 1}). |
|
* @param {string} colorName - Standard color name string (e.g., 'red', 'blue'). |
|
* @param {number} [alpha=0.7] - Alpha transparency level (0.0 to 1.0) for the overlay color. |
|
* @returns {Promise<Sharp>} A *new* sharp instance with the mask overlaid. |
|
*/ |
|
async function overlayMaskOnImage( |
|
imgInput: Buffer | string | Sharp, |
|
maskData: Buffer, |
|
maskInfo: MaskInfo, |
|
colorName: string, |
|
alpha: number = 0.7 |
|
): Promise<Sharp> { |
|
if (!maskData || !maskInfo || maskInfo.channels !== 1) { |
|
throw new Error( |
|
"Invalid maskData or maskInfo provided. Requires grayscale buffer (1 channel) and info." |
|
); |
|
} |
|
if (alpha < 0.0 || alpha > 1.0) { |
|
throw new Error("Alpha must be between 0.0 and 1.0"); |
|
} |
|
// Need color-string library: `pnpm add color-string @types/color-string` or `npm install color-string @types/color-string` |
|
const parsedColor = colorString.get.rgb(colorName); // Returns [r, g, b] or null |
|
if (!parsedColor) { |
|
throw new Error( |
|
`Invalid color name '${colorName}'. Check available CSS color names or provide hex/rgb.` |
|
); |
|
} |
|
|
|
// Calculate the RGBA overlay color bytes (0-255 range) including user alpha |
|
const overlayR = parsedColor[0]; |
|
const overlayG = parsedColor[1]; |
|
const overlayB = parsedColor[2]; |
|
// Alpha for the *overlay color itself*. How much it covers the background. |
|
const overlayA = Math.round(alpha * 255); // User-defined alpha for the overlay color (0-255) |
|
|
|
// Prepare base image: ensure RGBA format |
|
// Prepare base image: ensure RGBA format |
|
// Prepare base image: ensure RGBA format |
|
let baseSharpInstance: Sharp; |
|
if (imgInput instanceof sharp) { |
|
// If input is already a Sharp instance, clone it using explicit cast |
|
baseSharpInstance = (imgInput as Sharp).clone(); |
|
} else { |
|
// If input is string or Buffer, create a new Sharp instance, casting input |
|
baseSharpInstance = sharp(imgInput as string | Buffer); |
|
} |
|
// Now baseSharpInstance is guaranteed to be a Sharp instance |
|
const baseSharpWithAlpha = baseSharpInstance.ensureAlpha(); // Ensure 4 channels (RGBA) |
|
|
|
const { data: baseData, info: baseInfo } = await baseSharpWithAlpha |
|
.raw() |
|
.toBuffer({ resolveWithObject: true }); |
|
|
|
// Dimension check |
|
if ( |
|
baseInfo.width !== maskInfo.width || |
|
baseInfo.height !== maskInfo.height |
|
) { |
|
throw new Error( |
|
`Base image dimensions (${baseInfo.width}x${baseInfo.height}) do not match mask dimensions (${maskInfo.width}x${maskInfo.height}).` |
|
); |
|
} |
|
// Channel check (ensureAlpha should handle this) |
|
if (baseInfo.channels !== 4) { |
|
throw new Error( |
|
`Base image must have 4 channels (RGBA) after ensureAlpha(), but has ${baseInfo.channels}. This indicates an issue.` |
|
); |
|
} |
|
|
|
const width = baseInfo.width; |
|
const height = baseInfo.height; |
|
const outputData = Buffer.from(baseData); // Create a *mutable copy* for the blended output |
|
|
|
// --- Manual Alpha Blending (Pixel by Pixel) --- |
|
for (let y = 0; y < height; y++) { |
|
for (let x = 0; x < width; x++) { |
|
const maskIdx = y * width + x; // Index for the single-channel mask buffer |
|
const baseIdx = maskIdx * 4; // Index for the 4-channel RGBA base/output buffer |
|
|
|
// Get mask value (0-255). Python code uses > 127 as threshold. |
|
const maskValue = maskData[maskIdx]; |
|
|
|
if (maskValue > 127) { |
|
// --- Apply Overlay Color using Standard Alpha Compositing (A over B) --- |
|
// Formula: C_out = C_overlay * alpha_overlay + C_background * (1 - alpha_overlay) |
|
// A_out = alpha_overlay + alpha_background * (1 - alpha_overlay) |
|
// Where alpha_overlay is the `alpha` parameter passed to the function (overlayA / 255.0) |
|
|
|
const bgR = baseData[baseIdx + 0]; |
|
const bgG = baseData[baseIdx + 1]; |
|
const bgB = baseData[baseIdx + 2]; |
|
const bgA = baseData[baseIdx + 3]; // Base image's alpha |
|
|
|
const alphaF = overlayA / 255.0; // Overlay alpha factor (0.0 to 1.0) |
|
const oneMinusAlphaF = 1.0 - alphaF; |
|
|
|
// Blend RGB channels: |
|
outputData[baseIdx + 0] = Math.round( |
|
overlayR * alphaF + bgR * oneMinusAlphaF |
|
); |
|
outputData[baseIdx + 1] = Math.round( |
|
overlayG * alphaF + bgG * oneMinusAlphaF |
|
); |
|
outputData[baseIdx + 2] = Math.round( |
|
overlayB * alphaF + bgB * oneMinusAlphaF |
|
); |
|
|
|
// Blend Alpha channel: |
|
// Combine the overlay alpha with the background alpha. |
|
const outA = overlayA + bgA * oneMinusAlphaF; // Note: bgA is 0-255 here |
|
outputData[baseIdx + 3] = Math.min(255, Math.round(outA)); // Clamp to 255 |
|
} |
|
// Else (maskValue <= 127): Pixel is *not* part of the mask. |
|
// We keep the original pixel from `baseData` which is already in `outputData` copy. |
|
} |
|
} |
|
|
|
// --- Create a *new* sharp instance from the blended raw pixel data --- |
|
// This is crucial: return sharp(outputData), not the original baseSharp or imgInput. |
|
return sharp(outputData, { |
|
raw: { width: width, height: height, channels: 4 }, // Specify the format of outputData |
|
}); |
|
} |
|
|
|
// --- 4. plotSegmentationMasks Function --- |
|
/** |
|
* Plots segmentation masks, bounding boxes, and labels on an image. |
|
* Applies color overlays first, then adds SVG for boxes and text. |
|
* |
|
* @async |
|
* @param {Buffer | string | Sharp} imgInput - Base image (path, buffer, or sharp object). |
|
* @param {SegmentationMask[]} segmentationMasks - Array of SegmentationMask objects. |
|
* @returns {Promise<Sharp>} A sharp instance with masks, boxes, and labels overlaid. |
|
*/ |
|
async function plotSegmentationMasks( |
|
imgInput: Buffer | string | Sharp, |
|
segmentationMasks: SegmentationMask[] |
|
): Promise<Sharp> { |
|
// Define a list of colors (CSS names work well for SVG) |
|
const colors: string[] = [ |
|
"red", |
|
"lime", |
|
"blue", |
|
"yellow", |
|
"fuchsia", |
|
"aqua", |
|
"orange", |
|
"green", |
|
"purple", |
|
"olive", |
|
"teal", |
|
"maroon", |
|
"lightcoral", |
|
"lightgreen", |
|
"lightblue", |
|
"gold", |
|
"violet", |
|
"turquoise", |
|
"darkred", |
|
"darkgreen", |
|
"darkblue", |
|
"darkorange", |
|
"deeppink", |
|
"deepskyblue", // Add more distinct colors if needed |
|
]; |
|
|
|
// Initialize currentSharp correctly based on input type |
|
let currentSharp: Sharp; |
|
if (imgInput instanceof sharp) { |
|
// If input is already a Sharp instance, clone it using explicit cast |
|
currentSharp = (imgInput as Sharp).clone(); |
|
} else { |
|
// If input is string or Buffer, create a new Sharp instance, casting input |
|
currentSharp = sharp(imgInput as string | Buffer); |
|
} |
|
// Now currentSharp is guaranteed to be a Sharp instance |
|
|
|
// --- Pass 1: Overlay Masks Sequentially --- |
|
// Each overlay modifies the image buffer used by the next overlay step. |
|
for (let i = 0; i < segmentationMasks.length; i++) { |
|
const mask = segmentationMasks[i]; |
|
if (!mask.maskData || !mask.maskInfo) { |
|
console.warn( |
|
`Skipping mask ${i} (${mask.label}) due to missing data/info.` |
|
); |
|
continue; |
|
} |
|
const color = colors[i % colors.length]; // Cycle through colors |
|
try { |
|
// Apply the overlay. overlayMaskOnImage returns a *new* sharp instance. |
|
currentSharp = await overlayMaskOnImage( |
|
currentSharp, // Pass the current sharp object (or its buffer) |
|
mask.maskData, |
|
mask.maskInfo, |
|
color, |
|
0.5 // Default alpha, maybe make this configurable? |
|
); |
|
} catch (error) { |
|
console.error(`Error overlaying mask ${i} (${mask.label}):`, error); |
|
// Decide whether to continue or re-throw |
|
// throw error; // Uncomment to stop processing on first mask error |
|
} |
|
} |
|
|
|
// --- Pass 2 & 3: Draw Bounding Boxes and Text via SVG Overlay --- |
|
const metadata: Metadata = await currentSharp.metadata(); // Get final dimensions AFTER mask overlays |
|
const { width, height } = metadata; |
|
if (!width || !height) { |
|
throw new Error("Could not get image dimensions after applying masks."); |
|
} |
|
const svgElements: string[] = []; |
|
|
|
// Add Bounding Boxes |
|
segmentationMasks.forEach((mask, i) => { |
|
const color = colors[i % colors.length]; |
|
const boxWidth = mask.x1 - mask.x0; |
|
const boxHeight = mask.y1 - mask.y0; |
|
if (boxWidth > 0 && boxHeight > 0) { |
|
// Ensure non-zero dimensions for rect |
|
svgElements.push( |
|
`<rect x="${mask.x0}" y="${mask.y0}" width="${boxWidth}" height="${boxHeight}" ` + |
|
`stroke="${color}" stroke-width="3" fill="none" />` // Slightly thinner stroke? |
|
); |
|
} else { |
|
console.warn( |
|
`Skipping drawing zero-dimension box for mask ${i} (${mask.label})` |
|
); |
|
} |
|
}); |
|
|
|
// Add Text Labels |
|
const fontSize = Math.max(16, Math.min(Math.round(height / 25), 28)); // Increased dynamic font size (min 16, max 28, slightly larger ratio) |
|
const textOffsetY = Math.max(3, Math.round(fontSize * 0.3)); // Adjusted offset |
|
const textOffsetX = Math.max(3, Math.round(fontSize * 0.2)); // Adjusted offset |
|
|
|
segmentationMasks.forEach((mask, i) => { |
|
const color = colors[i % colors.length]; |
|
// Basic check for non-empty label |
|
if (mask.label && mask.label.trim() !== "") { |
|
// Simple SVG text escaping |
|
const escapedLabel = mask.label |
|
.replace(/&/g, "&") |
|
.replace(/</g, "<") |
|
.replace(/>/g, ">"); |
|
|
|
// Position text slightly above the top-left corner of the box |
|
const textX = mask.x0 + textOffsetX; |
|
// Ensure text doesn't go above the image (y=0) |
|
const textY = Math.max(fontSize, mask.y0 - textOffsetY); |
|
|
|
// SVG Text element with outline for better visibility |
|
svgElements.push( |
|
`<text x="${textX}" y="${textY}" ` + |
|
`font-family="sans-serif" font-size="${fontSize}" fill="${color}" ` + |
|
// `paint-order` makes stroke appear behind fill |
|
`paint-order="stroke" stroke="black" stroke-width="1px" stroke-linecap="butt" stroke-linejoin="miter">` + |
|
`${escapedLabel}</text>` |
|
); |
|
} |
|
}); |
|
|
|
// Create the full SVG string |
|
const svgOverlay = |
|
`<svg width="${width}" height="${height}" xmlns="http://www.w3.org/2000/svg">` + |
|
svgElements.join("\n ") + // Add newline for readability if debugging SVG |
|
`</svg>`; |
|
const svgBuffer = Buffer.from(svgOverlay); |
|
|
|
// Composite the SVG onto the current sharp instance |
|
try { |
|
const compositeOptions: OverlayOptions = { |
|
input: svgBuffer, |
|
top: 0, |
|
left: 0, |
|
// density: 72 // Optional: Adjust DPI if needed, default usually okay |
|
}; |
|
// Sharp's composite returns the same instance, modified. |
|
currentSharp = currentSharp.composite([compositeOptions]); |
|
} catch (error) { |
|
console.error(`Error compositing SVG overlay:`, error); |
|
// Re-throw or handle? |
|
// throw error; |
|
} |
|
|
|
return currentSharp; // Return the final sharp instance with all overlays |
|
} |
|
|
|
// --- 5. generateOverlayImage Function --- |
|
|
|
// Define allowed formats and their mimetypes |
|
const FORMAT_TO_MIMETYPE: { |
|
[key in "jpeg" | "png" | "webp" | "tiff" | "gif" | "avif" | "heif"]: string; |
|
} = { |
|
jpeg: "image/jpeg", |
|
png: "image/png", |
|
webp: "image/webp", |
|
tiff: "image/tiff", |
|
gif: "image/gif", // Sharp can output GIF |
|
avif: "image/avif", |
|
heif: "image/heif", |
|
}; |
|
type SupportedFormat = keyof typeof FORMAT_TO_MIMETYPE; |
|
|
|
/** |
|
* Main function to load an image, parse masks, generate overlays, and return a base64 data URI. |
|
* |
|
* @async |
|
* @param {string | Buffer} sourceImage - Path to the source image file or a Buffer containing image data. |
|
* @param {InputMaskItem[]} jsonMasks - Array of raw mask prediction objects. |
|
* @returns {Promise<string>} A base64 encoded data URI string (e.g., "data:image/png;base64,..."). |
|
* @throws {Error} If image metadata cannot be read, parsing fails, or overlay generation fails. |
|
*/ |
|
export async function generateOverlayImage( |
|
sourceImage: string | Buffer, |
|
jsonMasks: InputMaskItem[] |
|
): Promise<string> { |
|
let metadata: Metadata; |
|
try { |
|
metadata = await sharp(sourceImage).metadata(); |
|
} catch (error) { |
|
console.error("Error reading image metadata:", error); |
|
throw new Error( |
|
`Failed to read metadata from source image. Ensure it's a valid image. Error: ${ |
|
error instanceof Error ? error.message : String(error) |
|
}` |
|
); |
|
} |
|
|
|
const { height: imgHeight, width: imgWidth, format } = metadata; |
|
|
|
if (!imgHeight || !imgWidth) { |
|
throw new Error("Could not determine image dimensions from metadata."); |
|
} |
|
if (!format || !(format in FORMAT_TO_MIMETYPE)) { |
|
throw new Error( |
|
`Unsupported image format: ${format}. Supported formats: ${Object.keys( |
|
FORMAT_TO_MIMETYPE |
|
).join(", ")}` |
|
); |
|
} |
|
|
|
const masks = await parseSegmentationMasks(jsonMasks, { |
|
imgHeight, |
|
imgWidth, |
|
}); |
|
|
|
if (masks.length === 0) { |
|
console.warn( |
|
"No valid masks were parsed from the input data. Returning original image as data URI." |
|
); |
|
// Still return the original image as a data URI |
|
const originalBuffer = await sharp(sourceImage).toBuffer(); |
|
const mimeType = FORMAT_TO_MIMETYPE[format as SupportedFormat]; |
|
return `data:${mimeType};base64,${originalBuffer.toString("base64")}`; |
|
} |
|
|
|
const finalSharpInstance = await plotSegmentationMasks(sourceImage, masks); |
|
|
|
// Determine output format and mime type based on input, default to PNG if needed |
|
const outputFormat = format as SupportedFormat; // Use the original format |
|
const mimeType = FORMAT_TO_MIMETYPE[outputFormat]; |
|
|
|
// Convert the final sharp instance to a buffer in the determined format |
|
let outputBuffer: Buffer; |
|
try { |
|
// Explicitly format the output buffer if necessary, though often not required if only compositing |
|
outputBuffer = await finalSharpInstance.toFormat(outputFormat).toBuffer(); |
|
} catch (error) { |
|
console.error( |
|
`Error converting final image to buffer with format ${outputFormat}:`, |
|
error |
|
); |
|
// Fallback to PNG? |
|
console.warn("Falling back to PNG format for output buffer."); |
|
try { |
|
outputBuffer = await finalSharpInstance.png().toBuffer(); |
|
// If fallback works, update mimeType (though technically the original might be preferred) |
|
// mimeType = FORMAT_TO_MIMETYPE.png; |
|
} catch (pngError) { |
|
console.error("Error converting final image to PNG buffer:", pngError); |
|
throw new Error( |
|
`Failed to generate final image buffer. Error: ${ |
|
pngError instanceof Error ? pngError.message : String(pngError) |
|
}` |
|
); |
|
} |
|
} |
|
|
|
return `data:${mimeType};base64,${outputBuffer.toString("base64")}`; |
|
} |
|
|
|
// Example Usage (Conceptual - requires actual image and mask data) |
|
/* |
|
async function runExample() { |
|
try { |
|
const imagePath = 'path/to/your/image.jpg'; // Replace with your image path |
|
const maskJsonData = [ // Replace with your actual mask data |
|
{ box_2d: [100, 150, 300, 350], mask: 'data:image/png;base64,...', label: 'object1' }, |
|
{ box_2d: [400, 450, 600, 650], mask: 'data:image/png;base64,...', label: 'object2' }, |
|
]; |
|
|
|
const dataUri = await generateOverlayImage(imagePath, maskJsonData); |
|
console.log('Generated Data URI:', dataUri.substring(0, 100) + '...'); // Print start of data URI |
|
|
|
// You could then, for example, write this to an HTML file to display it: |
|
// import fs from 'fs'; |
|
// const htmlContent = `<img src="${dataUri}" alt="Image with Segmentation Masks">`; |
|
// fs.writeFileSync('output.html', htmlContent); |
|
// console.log('Saved output.html'); |
|
|
|
} catch (error) { |
|
console.error('Error generating overlay image:', error); |
|
} |
|
} |
|
|
|
runExample(); |
|
*/ |