Skip to content

Instantly share code, notes, and snippets.

@mblondel
Last active September 19, 2024 06:13
Show Gist options
  • Save mblondel/7337391 to your computer and use it in GitHub Desktop.
Save mblondel/7337391 to your computer and use it in GitHub Desktop.
Learning to rank metrics.
# (C) Mathieu Blondel, November 2013
# License: BSD 3 clause
import numpy as np
def ranking_precision_score(y_true, y_score, k=10):
"""Precision at rank k
Parameters
----------
y_true : array-like, shape = [n_samples]
Ground truth (true relevance labels).
y_score : array-like, shape = [n_samples]
Predicted scores.
k : int
Rank.
Returns
-------
precision @k : float
"""
unique_y = np.unique(y_true)
if len(unique_y) > 2:
raise ValueError("Only supported for two relevance levels.")
pos_label = unique_y[1]
n_pos = np.sum(y_true == pos_label)
order = np.argsort(y_score)[::-1]
y_true = np.take(y_true, order[:k])
n_relevant = np.sum(y_true == pos_label)
# Divide by min(n_pos, k) such that the best achievable score is always 1.0.
return float(n_relevant) / min(n_pos, k)
def average_precision_score(y_true, y_score, k=10):
"""Average precision at rank k
Parameters
----------
y_true : array-like, shape = [n_samples]
Ground truth (true relevance labels).
y_score : array-like, shape = [n_samples]
Predicted scores.
k : int
Rank.
Returns
-------
average precision @k : float
"""
unique_y = np.unique(y_true)
if len(unique_y) > 2:
raise ValueError("Only supported for two relevance levels.")
pos_label = unique_y[1]
n_pos = np.sum(y_true == pos_label)
order = np.argsort(y_score)[::-1][:min(n_pos, k)]
y_true = np.asarray(y_true)[order]
score = 0
for i in xrange(len(y_true)):
if y_true[i] == pos_label:
# Compute precision up to document i
# i.e, percentage of relevant documents up to document i.
prec = 0
for j in xrange(0, i + 1):
if y_true[j] == pos_label:
prec += 1.0
prec /= (i + 1.0)
score += prec
if n_pos == 0:
return 0
return score / n_pos
def dcg_score(y_true, y_score, k=10, gains="exponential"):
"""Discounted cumulative gain (DCG) at rank k
Parameters
----------
y_true : array-like, shape = [n_samples]
Ground truth (true relevance labels).
y_score : array-like, shape = [n_samples]
Predicted scores.
k : int
Rank.
gains : str
Whether gains should be "exponential" (default) or "linear".
Returns
-------
DCG @k : float
"""
order = np.argsort(y_score)[::-1]
y_true = np.take(y_true, order[:k])
if gains == "exponential":
gains = 2 ** y_true - 1
elif gains == "linear":
gains = y_true
else:
raise ValueError("Invalid gains option.")
# highest rank is 1 so +2 instead of +1
discounts = np.log2(np.arange(len(y_true)) + 2)
return np.sum(gains / discounts)
def ndcg_score(y_true, y_score, k=10, gains="exponential"):
"""Normalized discounted cumulative gain (NDCG) at rank k
Parameters
----------
y_true : array-like, shape = [n_samples]
Ground truth (true relevance labels).
y_score : array-like, shape = [n_samples]
Predicted scores.
k : int
Rank.
gains : str
Whether gains should be "exponential" (default) or "linear".
Returns
-------
NDCG @k : float
"""
best = dcg_score(y_true, y_true, k, gains)
actual = dcg_score(y_true, y_score, k, gains)
return actual / best
# Alternative API.
def dcg_from_ranking(y_true, ranking):
"""Discounted cumulative gain (DCG) at rank k
Parameters
----------
y_true : array-like, shape = [n_samples]
Ground truth (true relevance labels).
ranking : array-like, shape = [k]
Document indices, i.e.,
ranking[0] is the index of top-ranked document,
ranking[1] is the index of second-ranked document,
...
k : int
Rank.
Returns
-------
DCG @k : float
"""
y_true = np.asarray(y_true)
ranking = np.asarray(ranking)
rel = y_true[ranking]
gains = 2 ** rel - 1
discounts = np.log2(np.arange(len(ranking)) + 2)
return np.sum(gains / discounts)
def ndcg_from_ranking(y_true, ranking):
"""Normalized discounted cumulative gain (NDCG) at rank k
Parameters
----------
y_true : array-like, shape = [n_samples]
Ground truth (true relevance labels).
ranking : array-like, shape = [k]
Document indices, i.e.,
ranking[0] is the index of top-ranked document,
ranking[1] is the index of second-ranked document,
...
k : int
Rank.
Returns
-------
NDCG @k : float
"""
k = len(ranking)
best_ranking = np.argsort(y_true)[::-1]
best = dcg_from_ranking(y_true, best_ranking[:k])
return dcg_from_ranking(y_true, ranking) / best
if __name__ == '__main__':
# Check that some rankings are better than others
assert dcg_score([5, 3, 2], [2, 1, 0]) > dcg_score([4, 3, 2], [2, 1, 0])
assert dcg_score([4, 3, 2], [2, 1, 0]) > dcg_score([1, 3, 2], [2, 1, 0])
assert dcg_score([5, 3, 2], [2, 1, 0], k=2) > dcg_score([4, 3, 2], [2, 1, 0], k=2)
assert dcg_score([4, 3, 2], [2, 1, 0], k=2) > dcg_score([1, 3, 2], [2, 1, 0], k=2)
# Perfect rankings
assert ndcg_score([5, 3, 2], [2, 1, 0]) == 1.0
assert ndcg_score([2, 3, 5], [0, 1, 2]) == 1.0
assert ndcg_from_ranking([5, 3, 2], [0, 1, 2]) == 1.0
assert ndcg_score([5, 3, 2], [2, 1, 0], k=2) == 1.0
assert ndcg_score([2, 3, 5], [0, 1, 2], k=2) == 1.0
assert ndcg_from_ranking([5, 3, 2], [0, 1]) == 1.0
# Check that sample order is irrelevant
assert dcg_score([5, 3, 2], [2, 1, 0]) == dcg_score([2, 3, 5], [0, 1, 2])
assert dcg_score([5, 3, 2], [2, 1, 0], k=2) == dcg_score([2, 3, 5], [0, 1, 2], k=2)
# Check equivalence between two interfaces.
assert dcg_score([5, 3, 2], [2, 1, 0]) == dcg_from_ranking([5, 3, 2], [0, 1, 2])
assert dcg_score([1, 3, 2], [2, 1, 0]) == dcg_from_ranking([1, 3, 2], [0, 1, 2])
assert dcg_score([1, 3, 2], [0, 2, 1]) == dcg_from_ranking([1, 3, 2], [1, 2, 0])
assert ndcg_score([1, 3, 2], [2, 1, 0]) == ndcg_from_ranking([1, 3, 2], [0, 1, 2])
assert dcg_score([5, 3, 2], [2, 1, 0], k=2) == dcg_from_ranking([5, 3, 2], [0, 1])
assert dcg_score([1, 3, 2], [2, 1, 0], k=2) == dcg_from_ranking([1, 3, 2], [0, 1])
assert dcg_score([1, 3, 2], [0, 2, 1], k=2) == dcg_from_ranking([1, 3, 2], [1, 2])
assert ndcg_score([1, 3, 2], [2, 1, 0], k=2) == \
ndcg_from_ranking([1, 3, 2], [0, 1])
# Precision
assert ranking_precision_score([1, 1, 0], [3, 2, 1], k=2) == 1.0
assert ranking_precision_score([1, 1, 0], [1, 0, 0.5], k=2) == 0.5
assert ranking_precision_score([1, 1, 0], [3, 2, 1], k=3) == \
ranking_precision_score([1, 1, 0], [1, 0, 0.5], k=3)
# Average precision
from sklearn.metrics import average_precision_score as ap
assert average_precision_score([1, 1, 0], [3, 2, 1]) == ap([1, 1, 0], [3, 2, 1])
assert average_precision_score([1, 1, 0], [3, 1, 0]) == ap([1, 1, 0], [3, 1, 0])
@senjed
Copy link

senjed commented Oct 5, 2018

hey! what do you mean by "true relevance labels"? is it the relevance score (unnormalized score showing the relevance of an item to a query, the higher the more relevant) or the position of the item in the result (zero being the highest shown) imagine an item is the most relevant does it have a high value or low value ?

@tobiasraabe
Copy link

Hi, thanks for the implementation, but I might caught an error in precision_at_k. Precision at k is calculated as the ratio between the number of correct classified samples divided by k or the total number of samples - whatever is smaller. Your implementation divides by n_pos = np.sum(y_true == pos_label) the total number of positive samples. This leads to wrong precision values if k > n_pos. It is easy to verify if you consider the case where all samples are classified as positive samples. Then, float(n_relevant) / min(n_pos, k) is 1 and not the ratio of positive samples to all samples. Please correct me if I am wrong.

@AsiehH
Copy link

AsiehH commented May 13, 2019

Hi,
The sklearn metric sklearn.metrics.average_precision_score is different from what you defined above. It does not depend on k since it is average precision not average precision at k.
Here are a few counter examples.

print(average_precision_score([1, 0, 1], [3, 2, 1]) == ap([1, 0, 1], [3, 2, 1]))
False
print(average_precision_score([1, 1, 1, 0], [3, 2, 1,4]) == ap([1, 1, 1, 0], [3, 2, 1,4]))
False
print(average_precision_score([1, 1, 1, 0], [3, 2, 4,1],k=2) == ap([1, 1, 1, 0], [3, 2, 4,1]))
False
print(average_precision_score([1, 1, 1, 0], [3, 2, 4,1],k=3) == ap([1, 1, 1, 0], [3, 2, 4,1]))
True

I found several codes online for average precision, average precision at k and mean average precision at k and almost all of them give different values. Is there any text reference that defines how these are calculated with an example that you can reference?

@kamalbanga
Copy link

kamalbanga commented Jan 31, 2020

What should be value of ndcg_score([0], [0])? It gives following warning since best & actual dcg_scores are both 0.

RuntimeWarning: invalid value encountered in double_scalars
return actual / best

But shouldn't it be just 1.0?

I believe, whenever best_dcg_score is 0, ndcg_score should be 1.0..

@houchengbin
Copy link

Thanks for your code. It is really helpful!

In "ranking_precision_score", I was wondering why you changed "return float(n_relevant)/k" to "return float(n_relevant)/min(n_pos, k)", and why it is important for "divide by min(n_pos, k) such that the best achievable score is always 1.0".

Is there any reference (e.g., papers, books, or other reliable resources) to this change, regarding "return float(n_relevant)/min(n_pos, k)"?

Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment