Inspired by ivyywang and Jason Davies. See the orthographic version.
Last active
June 7, 2021 02:36
-
-
Save mbostock/1e10b76becaa4ea4471262bcae619dae to your computer and use it in GitHub Desktop.
Versor Dragging II
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
license: gpl-3.0 | |
height: 600 | |
redirect: https://observablehq.com/@d3/versor-dragging |
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
<!DOCTYPE html> | |
<canvas width="960" height="600"></cavnas> | |
<script src="https://d3js.org/d3.v4.min.js"></script> | |
<script src="https://unpkg.com/topojson-client@2"></script> | |
<script src="versor.js"></script> | |
<script> | |
var canvas = d3.select("canvas"), | |
width = canvas.property("width"), | |
height = canvas.property("height"), | |
context = canvas.node().getContext("2d"); | |
var projection = d3.geoMercator() | |
.translate([width / 2, height / 2]) | |
.precision(0.1); | |
var path = d3.geoPath() | |
.projection(projection) | |
.context(context); | |
canvas.call(d3.drag() | |
.on("start", dragstarted) | |
.on("drag", dragged)); | |
var render = function() {}, | |
v0, // Mouse position in Cartesian coordinates at start of drag gesture. | |
r0, // Projection rotation as Euler angles at start. | |
q0; // Projection rotation as versor at start. | |
function dragstarted() { | |
v0 = versor.cartesian(projection.invert(d3.mouse(this))); | |
r0 = projection.rotate(); | |
q0 = versor(r0); | |
} | |
function dragged() { | |
var v1 = versor.cartesian(projection.rotate(r0).invert(d3.mouse(this))), | |
q1 = versor.multiply(q0, versor.delta(v0, v1)), | |
r1 = versor.rotation(q1); | |
projection.rotate(r1); | |
render(); | |
} | |
d3.json("https://unpkg.com/world-atlas@1/world/110m.json", function(error, world) { | |
if (error) throw error; | |
var land = topojson.feature(world, world.objects.land); | |
render = function() { | |
context.fillStyle = "#fff", context.fillRect(0, 0, width, height); | |
context.beginPath(), path(land), context.fillStyle = "#000", context.fill(); | |
}; | |
render(); | |
}); | |
</script> |
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
// Version 0.0.0. Copyright 2017 Mike Bostock. | |
(function(global, factory) { | |
typeof exports === 'object' && typeof module !== 'undefined' ? module.exports = factory() : | |
typeof define === 'function' && define.amd ? define(factory) : | |
(global.versor = factory()); | |
}(this, (function() {'use strict'; | |
var acos = Math.acos, | |
asin = Math.asin, | |
atan2 = Math.atan2, | |
cos = Math.cos, | |
max = Math.max, | |
min = Math.min, | |
PI = Math.PI, | |
sin = Math.sin, | |
sqrt = Math.sqrt, | |
radians = PI / 180, | |
degrees = 180 / PI; | |
// Returns the unit quaternion for the given Euler rotation angles [λ, φ, γ]. | |
function versor(e) { | |
var l = e[0] / 2 * radians, sl = sin(l), cl = cos(l), // λ / 2 | |
p = e[1] / 2 * radians, sp = sin(p), cp = cos(p), // φ / 2 | |
g = e[2] / 2 * radians, sg = sin(g), cg = cos(g); // γ / 2 | |
return [ | |
cl * cp * cg + sl * sp * sg, | |
sl * cp * cg - cl * sp * sg, | |
cl * sp * cg + sl * cp * sg, | |
cl * cp * sg - sl * sp * cg | |
]; | |
} | |
// Returns Cartesian coordinates [x, y, z] given spherical coordinates [λ, φ]. | |
versor.cartesian = function(e) { | |
var l = e[0] * radians, p = e[1] * radians, cp = cos(p); | |
return [cp * cos(l), cp * sin(l), sin(p)]; | |
}; | |
// Returns the Euler rotation angles [λ, φ, γ] for the given quaternion. | |
versor.rotation = function(q) { | |
return [ | |
atan2(2 * (q[0] * q[1] + q[2] * q[3]), 1 - 2 * (q[1] * q[1] + q[2] * q[2])) * degrees, | |
asin(max(-1, min(1, 2 * (q[0] * q[2] - q[3] * q[1])))) * degrees, | |
atan2(2 * (q[0] * q[3] + q[1] * q[2]), 1 - 2 * (q[2] * q[2] + q[3] * q[3])) * degrees | |
]; | |
}; | |
// Returns the quaternion to rotate between two cartesian points on the sphere. | |
versor.delta = function(v0, v1) { | |
var w = cross(v0, v1), l = sqrt(dot(w, w)); | |
if (!l) return [1, 0, 0, 0]; | |
var t = acos(max(-1, min(1, dot(v0, v1)))) / 2, s = sin(t); // t = θ / 2 | |
return [cos(t), w[2] / l * s, -w[1] / l * s, w[0] / l * s]; | |
}; | |
// Returns the quaternion that represents q0 * q1. | |
versor.multiply = function(q0, q1) { | |
return [ | |
q0[0] * q1[0] - q0[1] * q1[1] - q0[2] * q1[2] - q0[3] * q1[3], | |
q0[1] * q1[0] + q0[0] * q1[1] + q0[2] * q1[3] - q0[3] * q1[2], | |
q0[0] * q1[2] - q0[1] * q1[3] + q0[2] * q1[0] + q0[3] * q1[1], | |
q0[0] * q1[3] + q0[1] * q1[2] - q0[2] * q1[1] + q0[3] * q1[0] | |
]; | |
}; | |
function cross(v0, v1) { | |
return [ | |
v0[1] * v1[2] - v0[2] * v1[1], | |
v0[2] * v1[0] - v0[0] * v1[2], | |
v0[0] * v1[1] - v0[1] * v1[0] | |
]; | |
} | |
function dot(v0, v1) { | |
return v0[0] * v1[0] + v0[1] * v1[1] + v0[2] * v1[2]; | |
} | |
return versor; | |
}))); |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment
typo in https://gist.github.com/mbostock/1e10b76becaa4ea4471262bcae619dae#file-index-html-L2
cavnas => canvas