This example demonstrates a complex chained transition for updating values in a donut chart, as considered by Robertson & Heer in Animated Transitions in Statistical Data Graphics. While fascinating to watch, users found the complicated transitions difficult to follow. For a simpler approach, see the Pie Chart Update series of examples.
Last active
August 27, 2023 08:26
-
-
Save mbostock/4341417 to your computer and use it in GitHub Desktop.
Donut Transitions
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
license: gpl-3.0 |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
<!DOCTYPE html> | |
<meta charset="utf-8"> | |
<body> | |
<script src="//d3js.org/d3.v3.min.js"></script> | |
<script> | |
var width = 960, | |
height = 500, | |
outerRadius = Math.min(width, height) * .5 - 10, | |
innerRadius = outerRadius * .6; | |
var n = 10, | |
data0 = d3.range(n).map(Math.random), | |
data1 = d3.range(n).map(Math.random), | |
data; | |
var color = d3.scale.category20(); | |
var arc = d3.svg.arc(); | |
var pie = d3.layout.pie() | |
.sort(null); | |
var svg = d3.select("body").append("svg") | |
.attr("width", width) | |
.attr("height", height); | |
svg.selectAll(".arc") | |
.data(arcs(data0, data1)) | |
.enter().append("g") | |
.attr("class", "arc") | |
.attr("transform", "translate(" + width / 2 + "," + height / 2 + ")") | |
.append("path") | |
.attr("fill", function(d, i) { return color(i); }) | |
.attr("d", arc); | |
transition(1); | |
function arcs(data0, data1) { | |
var arcs0 = pie(data0), | |
arcs1 = pie(data1), | |
i = -1, | |
arc; | |
while (++i < n) { | |
arc = arcs0[i]; | |
arc.innerRadius = innerRadius; | |
arc.outerRadius = outerRadius; | |
arc.next = arcs1[i]; | |
} | |
return arcs0; | |
} | |
function transition(state) { | |
var path = d3.selectAll(".arc > path") | |
.data(state ? arcs(data0, data1) : arcs(data1, data0)); | |
// Wedges split into two rings. | |
var t0 = path.transition() | |
.duration(1000) | |
.attrTween("d", tweenArc(function(d, i) { | |
return { | |
innerRadius: i & 1 ? innerRadius : (innerRadius + outerRadius) / 2, | |
outerRadius: i & 1 ? (innerRadius + outerRadius) / 2 : outerRadius | |
}; | |
})); | |
// Wedges translate to be centered on their final position. | |
var t1 = t0.transition() | |
.attrTween("d", tweenArc(function(d, i) { | |
var a0 = d.next.startAngle + d.next.endAngle, | |
a1 = d.startAngle - d.endAngle; | |
return { | |
startAngle: (a0 + a1) / 2, | |
endAngle: (a0 - a1) / 2 | |
}; | |
})); | |
// Wedges then update their values, changing size. | |
var t2 = t1.transition() | |
.attrTween("d", tweenArc(function(d, i) { | |
return { | |
startAngle: d.next.startAngle, | |
endAngle: d.next.endAngle | |
}; | |
})); | |
// Wedges reunite into a single ring. | |
var t3 = t2.transition() | |
.attrTween("d", tweenArc(function(d, i) { | |
return { | |
innerRadius: innerRadius, | |
outerRadius: outerRadius | |
}; | |
})); | |
setTimeout(function() { transition(!state); }, 5000); | |
} | |
function tweenArc(b) { | |
return function(a, i) { | |
var d = b.call(this, a, i), i = d3.interpolate(a, d); | |
for (var k in d) a[k] = d[k]; // update data | |
return function(t) { return arc(i(t)); }; | |
}; | |
} | |
</script> |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment