Skip to content

Instantly share code, notes, and snippets.

@mbostock
Last active November 27, 2019 04:39
Show Gist options
  • Save mbostock/76456029b13c68accf6e to your computer and use it in GitHub Desktop.
Save mbostock/76456029b13c68accf6e to your computer and use it in GitHub Desktop.
Voroblobinoids
license: gpl-3.0
redirect: https://observablehq.com/@mbostock/voroblobinoids
<!DOCTYPE html>
<meta charset="utf-8">
<canvas width="960" height="500"></canvas>
<script src="//d3js.org/d3-voronoi.v0.3.min.js"></script>
<script src="//d3js.org/d3-timer.v0.1.min.js"></script>
<script>
var canvas = document.querySelector("canvas"),
width = canvas.width,
height = canvas.height,
context = canvas.getContext("2d"),
voronoi = d3_voronoi.voronoi().extent([[0.5, 0.5], [width - 0.5, height - 0.5]]);
var n = 100,
particles = new Array(n),
radius = 12;
for (var i = 0; i < n; ++i) particles[i] = {0: Math.random() * width, 1: Math.random() * height, vx: 0, vy: 0};
d3_timer.timer(function(elapsed) {
for (var i = 0; i < n; ++i) {
var p = particles[i];
p[0] += p.vx; if (p[0] < 0) p[0] = p.vx *= -1; else if (p[0] > width) p[0] = width + (p.vx *= -1);
p[1] += p.vy; if (p[1] < 0) p[1] = p.vy *= -1; else if (p[1] > height) p[1] = height + (p.vy *= -1);
p.vx += 0.1 * (Math.random() - .5) - 0.01 * p.vx;
p.vy += 0.1 * (Math.random() - .5) - 0.01 * p.vy;
}
var cells = voronoi.polygons(particles);
context.clearRect(0, 0, width, height);
context.beginPath();
cells.forEach(function(cell) { drawRoundedPolygon(cell, radius); });
context.fillStyle = "#ddd";
context.fill();
context.lineWidth = 5;
context.strokeStyle = "#fff";
context.stroke();
context.beginPath();
cells.forEach(function(cell) { drawPolygon(cell); });
context.lineWidth = 1;
context.strokeStyle = "#aaa";
context.stroke();
context.beginPath();
particles.forEach(function(particle) { drawPoint(particle); });
context.fillStyle = "#000";
context.fill();
});
function drawPoint(point) {
context.moveTo(point[0] + 1.5, point[1]);
context.arc(point[0], point[1], 1.5, 0, 2 * Math.PI);
}
function drawPolygon(points) {
context.moveTo(points[0][0], points[0][1]);
for (var i = 1, n = points.length; i < n; ++i) context.lineTo(points[i][0], points[i][1]);
context.closePath();
}
function drawRoundedPolygon(points, r) {
var i,
n = points.length,
p0,
p1,
p2,
p3,
n1 = 0,
t012,
t123,
x21, y21,
x4, y4,
x5, y5,
moved,
circle = polygonIncircle(points);
// Build a linked list from the array of vertices so we can splice.
for (i = 0, p1 = points[n - 2], p2 = points[n - 1]; i < n; ++i) {
p0 = p1, p1 = p2, p2 = points[i];
p1.previous = p0;
p1.next = p2;
}
// The rounding radius can’t be bigger than the polygon’s incircle.
// The fudge factor of 1px lets the rounded polygon get squished a bit.
// TODO Abort the search for the incircle if one is found larger than r.
r = Math.min(r, circle.radius - 1);
if (r <= 0) return;
// TODO do we need to make all these extra passes?
for (i = 0, p3 = p2.next; n1 <= n; ++n1) {
p0 = p1, p1 = p2, p2 = p3, p3 = p3.next;
t012 = cornerTangent(p0[0], p0[1], p1[0], p1[1], p2[0], p2[1], r);
t123 = 1 - cornerTangent(p3[0], p3[1], p2[0], p2[1], p1[0], p1[1], r);
// If the following corner’s tangent is before this corner’s tangent,
// replace p1 and p2 with the intersection of the lines 01 and 23.
if (t012 >= t123) {
p2 = p0.next = p3.previous = lineLineIntersection(p0[0], p0[1], p1[0], p1[1], p2[0], p2[1], p3[0], p3[1]);
p2.previous = p0;
p2.next = p3;
p3 = p2;
p2 = p3.previous;
p1 = p2.previous;
p0 = p1.previous;
n1 = 0;
if (--n < 3) break;
}
}
// If we removed too many points, just draw the previously computed incircle.
if (n < 3) {
context.moveTo(circle[0] + circle.radius, circle[1]);
context.arc(circle[0], circle[1], circle.radius, 0, 2 * Math.PI);
return;
}
// Draw the rounded polygon, compting the corner tangents.
for (i = 0; i <= n; ++i) {
p0 = p1, p1 = p2, p2 = p3, p3 = p3.next;
t012 = cornerTangent(p0[0], p0[1], p1[0], p1[1], p2[0], p2[1], r);
t123 = 1 - cornerTangent(p3[0], p3[1], p2[0], p2[1], p1[0], p1[1], r);
x21 = p2[0] - p1[0], y21 = p2[1] - p1[1];
x4 = p1[0] + t012 * x21, y4 = p1[1] + t012 * y21;
x5 = p1[0] + t123 * x21, y5 = p1[1] + t123 * y21;
if (moved) context.arcTo(p1[0], p1[1], x4, y4, r);
else moved = true, context.moveTo(x4, y4);
context.lineTo(x5, y5);
}
}
// Given a circle of radius r that is tangent to the line segments 01 and 12,
// returns the parameter t of the tangent along the line segment 12.
function cornerTangent(x0, y0, x1, y1, x2, y2, r) {
var theta = innerAngle(x0, y0, x1, y1, x2, y2),
x21 = x2 - x1, y21 = y2 - y1,
l21 = Math.sqrt(x21 * x21 + y21 * y21),
l14 = r / Math.tan(theta / 2);
return l14 / l21;
}
// A horrible brute-force algorithm for determining the largest circle that can
// fit inside a convex polygon. For each distinct set of three sides of the
// polygon, compute the tangent circle. Then reduce the circle’s radius against
// the remaining sides of the polygon.
function polygonIncircle(points) {
var circle = {radius: 0};
for (var i = 0, n = points.length; i < n; ++i) {
var pi0 = points[i],
pi1 = points[(i + 1) % n];
for (var j = i + 1; j < n; ++j) {
var pj0 = points[j],
pj1 = points[(j + 1) % n],
pij = j === i + 1 ? pj0 : lineLineIntersection(pi0[0], pi0[1], pi1[0], pi1[1], pj0[0], pj0[1], pj1[0], pj1[1]);
search: for (var k = j + 1; k < n; ++k) {
var pk0 = points[k],
pk1 = points[(k + 1) % n],
pik = lineLineIntersection(pi0[0], pi0[1], pi1[0], pi1[1], pk0[0], pk0[1], pk1[0], pk1[1]),
pjk = k === j + 1 ? pk0 : lineLineIntersection(pj0[0], pj0[1], pj1[0], pj1[1], pk0[0], pk0[1], pk1[0], pk1[1]),
candidate = triangleIncircle(pij[0], pij[1], pik[0], pik[1], pjk[0], pjk[1]),
radius = candidate.radius;
for (var l = 0; l < n; ++l) {
var pl0 = points[l],
pl1 = points[(l + 1) % n],
r = pointLineDistance(candidate[0], candidate[1], pl0[0], pl0[1], pl1[0], pl1[1]);
if (r < circle.radius) continue search;
if (r < radius) radius = r;
}
circle = candidate;
circle.radius = radius;
}
}
}
return circle;
}
// Returns the angle between segments 01 and 12.
function innerAngle(x0, y0, x1, y1, x2, y2) {
var x01 = x0 - x1, y01 = y0 - y1,
x12 = x1 - x2, y12 = y1 - y2,
x02 = x0 - x2, y02 = y0 - y2,
l01_2 = x01 * x01 + y01 * y01,
l12_2 = x12 * x12 + y12 * y12,
l02_2 = x02 * x02 + y02 * y02;
return Math.acos((l12_2 + l01_2 - l02_2) / (2 * Math.sqrt(l12_2 * l01_2)));
}
// Returns the intersection of the infinite lines 01 and 23.
function lineLineIntersection(x0, y0, x1, y1, x2, y2, x3, y3) {
var x02 = x0 - x2, y02 = y0 - y2,
x10 = x1 - x0, y10 = y1 - y0,
x32 = x3 - x2, y32 = y3 - y2,
t = (x32 * y02 - y32 * x02) / (y32 * x10 - x32 * y10);
return [x0 + t * x10, y0 + t * y10];
}
// Returns the signed distance from point 0 to the infinite line 12.
function pointLineDistance(x0, y0, x1, y1, x2, y2) {
var x21 = x2 - x1, y21 = y2 - y1;
return (y21 * x0 - x21 * y0 + x2 * y1 - y2 * x1) / Math.sqrt(y21 * y21 + x21 * x21);
}
// Returns the largest circle inside the triangle 012.
function triangleIncircle(x0, y0, x1, y1, x2, y2) {
var x01 = x0 - x1, y01 = y0 - y1,
x02 = x0 - x2, y02 = y0 - y2,
x12 = x1 - x2, y12 = y1 - y2,
l01 = Math.sqrt(x01 * x01 + y01 * y01),
l02 = Math.sqrt(x02 * x02 + y02 * y02),
l12 = Math.sqrt(x12 * x12 + y12 * y12),
k0 = l01 / (l01 + l02),
k1 = l12 / (l12 + l01),
center = lineLineIntersection(x0, y0, x1 - k0 * x12, y1 - k0 * y12, x1, y1, x2 + k1 * x02, y2 + k1 * y02);
center.radius = Math.sqrt((l02 + l12 - l01) * (l12 + l01 - l02) * (l01 + l02 - l12) / (l01 + l02 + l12)) / 2;
return center;
}
</script>
@barrybecker4
Copy link

It would be nice to have some text that describes what a voroblobinoid is and what the simulation shows. Are the dots the vertices in the delaunay triangulation?

Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment