Skip to content

Instantly share code, notes, and snippets.

@mbrcknl
Last active September 8, 2017 12:20
Show Gist options
  • Save mbrcknl/a5f659317bc4fcce7aeb0c6cd583489b to your computer and use it in GitHub Desktop.
Save mbrcknl/a5f659317bc4fcce7aeb0c6cd583489b to your computer and use it in GitHub Desktop.
theory locale_experiment
imports Main
begin
section \<open>Algebraic formulation of a semilattice\<close>
locale semigroup =
fixes ap :: "'a \<Rightarrow> 'a \<Rightarrow> 'a"
assumes assoc: "\<And>x y z. ap x (ap y z) = ap (ap x y) z"
locale commutative_semigroup = semigroup +
assumes comm: "\<And>x y. ap x y = ap y x"
locale idempotent_semigroup = semigroup +
assumes idem: "\<And>x. ap x x = x"
locale alg_semilattice
= commutative_semigroup meet + idempotent_semigroup meet
for meet
lemmas (in alg_semilattice)
alg_semilattice_assms = assoc comm idem
section \<open>Order-theoretic formulation of a semilattice\<close>
locale partial_order =
fixes ord :: "'a \<Rightarrow> 'a \<Rightarrow> bool"
assumes refl: "\<And>x. ord x x"
assumes trans: "\<And>x y z. ord x y \<Longrightarrow> ord y z \<Longrightarrow> ord x z"
assumes anti: "\<And>x y. ord x y \<Longrightarrow> ord y x \<Longrightarrow> x = y"
locale ord_semilattice = partial_order +
fixes glb :: "'a \<Rightarrow> 'a \<Rightarrow> 'a"
assumes lower_bound_l: "\<And>x y. ord (glb x y) x"
assumes lower_bound_r: "\<And>x y. ord (glb x y) y"
assumes greatest: "\<And>x y t. ord t x \<Longrightarrow> ord t y \<Longrightarrow> ord t (glb x y)"
lemmas (in ord_semilattice)
ord_semilattice_assms = refl trans anti lower_bound_l lower_bound_r greatest
section \<open>Restriction of @{term ord_semilattice} to the natural ordering\<close>
abbreviation natural_order :: "('a \<Rightarrow> 'a \<Rightarrow> 'a) \<Rightarrow> 'a \<Rightarrow> 'a \<Rightarrow> bool" where
"natural_order f \<equiv> \<lambda>x y. x = f x y"
locale natural_ord_semilattice = ord_semilattice "natural_order meet" meet for meet
section \<open>Correspondences between @{term ord_semilattice} and @{term alg_semilattice}\<close>
text \<open>Every @{term ord_semilattice} is an @{term alg_semilattice}.\<close>
sublocale ord_semilattice < alg_of_ord?: alg_semilattice glb
apply unfold_locales
apply (meson anti greatest trans lower_bound_l lower_bound_r)
apply (simp add: anti greatest lower_bound_l lower_bound_r)
apply (simp add: anti greatest refl lower_bound_r)
done
text \<open>Every @{term alg_semilattice} induces an @{term ord_semilattice} via the @{term natural_order}.\<close>
sublocale alg_semilattice < ord_of_alg?: natural_ord_semilattice meet
apply unfold_locales
apply (simp add: idem)
apply (metis assoc)
apply (simp add: comm)
apply (simp add: assoc comm idem)
apply (metis assoc idem)
apply (simp add: assoc)
done
section \<open>Examples\<close>
abbreviation min_order :: "'a::linorder \<Rightarrow> 'a \<Rightarrow> 'a" where
"min_order \<equiv> min"
text \<open>We show that @{term min_order} gives an @{term alg_semilattice}.\<close>
global_interpretation min_order_alg: alg_semilattice min_order
apply unfold_locales
apply (rule min.assoc[symmetric])
apply (rule min.commute)
apply (rule min.idem)
done
text \<open>It follows that it is also an @{term ord_semilattice}.\<close>
thm min_order_alg.ord_semilattice_assms
lemma natural_order_min_order_less_eq: "natural_order min_order = less_eq"
unfolding min_def by auto
abbreviation max_order :: "'a::linorder \<Rightarrow> 'a \<Rightarrow> 'a" where
"max_order \<equiv> max"
text \<open>We show that @{term max_order} gives a @{term natural_ord_semilattice}.\<close>
global_interpretation max_order_alg: natural_ord_semilattice max_order
apply unfold_locales
apply simp
apply (metis max.assoc)
apply (simp add: max.commute)
apply (simp add: max.commute)
apply simp
apply linarith
done
text \<open>It follows that it is also an @{term alg_semilattice}.\<close>
thm max_order_alg.alg_semilattice_assms
lemma natural_order_max_order_greater_eq: "natural_order max_order = greater_eq"
unfolding max_def by fastforce
end
Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment