Created
December 12, 2020 06:30
-
-
Save mbrookhart/c4730cbec48eaa4afcbf86d875847f9f to your computer and use it in GitHub Desktop.
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
import tvm | |
from tvm import relay | |
from tvm.contrib import graph_runtime | |
import numpy as np | |
shapes = [ | |
[(2000, 2, 2), 0], | |
[(2, 2000, 2), 1], | |
[(2, 2, 2000), 2], | |
[(4000, 2, 2), 0], | |
[(2, 4000, 2), 1], | |
[(2, 2, 4000), 2], | |
[(2, 12000, 2), 1], | |
[(2, 2, 12000), 2], | |
[(12000, 2, 2), 0], | |
[(2000, 8, 8), 0], | |
[(8, 2000, 8), 1], | |
[(8, 8, 2000), 2], | |
[(4000, 8, 8), 0], | |
[(8, 4000, 8), 1], | |
[(8, 8, 4000), 2], | |
[(12000, 8, 8), 0], | |
[(8, 12000, 8), 1], | |
[(8, 8, 12000), 2], | |
] | |
ctx = tvm.gpu(0) | |
target="cuda" | |
for shape, axis in shapes: | |
x = relay.var("x", relay.TensorType(shape, "float32")) | |
z = relay.argsort(x, axis=axis, is_ascend=True, dtype="int32") | |
func = relay.Function([x], z) | |
mod = tvm.ir.IRModule.from_expr(func) | |
with tvm.transform.PassContext(opt_level=3): | |
lib = relay.build(mod, target) | |
m = graph_runtime.GraphModule(lib['default'](ctx)) | |
ftimer = m.module.time_evaluator("run", ctx, number=1, repeat=10) | |
prof_res = np.array(ftimer().results) | |
print(shape, axis, "Mean inference time (std dev): %.2f ms (%.2f ms)" % | |
(np.mean(prof_res) * 1000, np.std(prof_res) * 1000)) |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment