Skip to content

Instantly share code, notes, and snippets.

@mbrookhart
Created December 10, 2020 17:08
Show Gist options
  • Select an option

  • Save mbrookhart/df25427cbbfb3c73ed16be72c8525610 to your computer and use it in GitHub Desktop.

Select an option

Save mbrookhart/df25427cbbfb3c73ed16be72c8525610 to your computer and use it in GitHub Desktop.
# Licensed to the Apache Software Foundation (ASF) under one
# or more contributor license agreements. See the NOTICE file
# distributed with this work for additional information
# regarding copyright ownership. The ASF licenses this file
# to you under the Apache License, Version 2.0 (the
# "License"); you may not use this file except in compliance
# with the License. You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing,
# software distributed under the License is distributed on an
# "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
# KIND, either express or implied. See the License for the
# specific language governing permissions and limitations
# under the License.
"""
Deploy Single Shot Multibox Detector(SSD) model
===============================================
**Author**: `Yao Wang <https://github.com/kevinthesun>`_
`Leyuan Wang <https://github.com/Laurawly>`_
This article is an introductory tutorial to deploy SSD models with TVM.
We will use GluonCV pre-trained SSD model and convert it to Relay IR
"""
import tvm
from tvm import te
from matplotlib import pyplot as plt
from tvm import relay
from tvm.contrib import graph_runtime
from tvm.contrib.debugger import debug_runtime as graph_runtime
from tvm.contrib.download import download_testdata
from gluoncv import model_zoo, data, utils
######################################################################
# Preliminary and Set parameters
# ------------------------------
# .. note::
#
# We support compiling SSD on both CPUs and GPUs now.
#
# To get best inference performance on CPU, change
# target argument according to your device and
# follow the :ref:`tune_relay_x86` to tune x86 CPU and
# :ref:`tune_relay_arm` for arm CPU.
#
# To get best inference performance on Intel graphics,
# change target argument to :code:`opencl -device=intel_graphics`.
# But when using Intel graphics on Mac, target needs to
# be set to `opencl` only for the reason that Intel subgroup
# extension is not supported on Mac.
#
# To get best inference performance on CUDA-based GPUs,
# change the target argument to :code:`cuda`; and for
# OPENCL-based GPUs, change target argument to
# :code:`opencl` followed by device argument according
# to your device.
supported_model = [
"ssd_512_resnet50_v1_voc",
"ssd_512_resnet50_v1_coco",
"ssd_512_resnet101_v2_voc",
"ssd_512_mobilenet1.0_voc",
"ssd_512_mobilenet1.0_coco",
"ssd_300_vgg16_atrous_voc" "ssd_512_vgg16_atrous_coco",
]
model_name = supported_model[0]
dshape = (1, 3, 512, 512)
######################################################################
# Download and pre-process demo image
im_fname = download_testdata(
"https://github.com/dmlc/web-data/blob/main/" + "gluoncv/detection/street_small.jpg?raw=true",
"street_small.jpg",
module="data",
)
x, img = data.transforms.presets.ssd.load_test(im_fname, short=512)
######################################################################
# Convert and compile model for CPU.
block = model_zoo.get_model(model_name, pretrained=True)
def build(target):
mod, params = relay.frontend.from_mxnet(block, {"data": dshape})
with tvm.transform.PassContext(opt_level=3):
graph, lib, params = relay.build(mod, target, params=params)
return graph, lib
######################################################################
# Create TVM runtime and do inference
def run(graph, lib, ctx):
# Build TVM runtime
m = graph_runtime.create(graph, lib, ctx)
tvm_input = tvm.nd.array(x.asnumpy(), ctx=ctx)
m.set_input("data", tvm_input)
# execute
m.run()
# get outputs
class_IDs, scores, bounding_boxs = m.get_output(0), m.get_output(1), m.get_output(2)
return class_IDs, scores, bounding_boxs
for target in ["cuda"]:
ctx = tvm.context(target, 0)
if ctx.exist:
graph, lib = build(target)
class_IDs, scores, bounding_boxs = run(graph, lib, ctx)
######################################################################
# Display result
ax = utils.viz.plot_bbox(
img,
bounding_boxs.asnumpy()[0],
scores.asnumpy()[0],
class_IDs.asnumpy()[0],
class_names=block.classes,
)
plt.show()
Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment