-
-
Save mbutler/0fd163d2bc861f1614db6f1c975b8a6a to your computer and use it in GitHub Desktop.
Predict output of Mersenne Twister after seeing 624 values
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
#!/usr/bin/env python | |
# | |
# Mersenne Twister predictor | |
# | |
# Feed this program the output of any 32-bit MT19937 Mersenne Twister and | |
# after seeing 624 values it will correctly predict the rest. | |
# | |
# The values may come from any point in the sequence -- the program does not | |
# need to see the first 624 values, just *any* 624 consecutive values. The | |
# seed used is also irrelevant, and it will work even if the generator was | |
# seeded from /dev/random or any other high quality source. | |
# | |
# The values should be in decimal, one per line, on standard input. | |
# | |
# The program expects the actual unsigned 32 bit integer values taken directly | |
# from the output of the Mersenne Twister. It won't work if they've been | |
# scaled or otherwise modified, such as by using modulo or | |
# std::uniform_int_distribution to alter the distribution/range. In principle | |
# it would be possible to cope with such a scenario if you knew the exact | |
# parameters used by such an algorithm, but this program does not have any | |
# such knowledge. | |
# | |
# For more information, refer to the original 1998 paper: | |
# | |
# "Mersenne Twister: A 623-dimensionally equidistributed uniform pseudorandom | |
# number generator", Makoto Matsumoto, Takuji Nishimura, 1998 | |
# | |
# http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.215.1141 | |
# | |
# This code is not written with speed or efficiency in mind, but to follow | |
# as closely as possible to the terminology and naming in the paper. | |
# | |
# License: CC0 http://creativecommons.org/publicdomain/zero/1.0/ | |
from __future__ import print_function | |
import sys | |
import collections | |
class Params: | |
# clearly a mathematician and not a programmer came up with these names | |
# because a dozen single-letter names would ordinarily be insane | |
w = 32 # word size | |
n = 624 # degree of recursion | |
m = 397 # middle term | |
r = 31 # separation point of one word | |
a = 0x9908b0df # bottom row of matrix A | |
u = 11 # tempering shift | |
s = 7 # tempering shift | |
t = 15 # tempering shift | |
l = 18 # tempering shift | |
b = 0x9d2c5680 # tempering mask | |
c = 0xefc60000 # tempering mask | |
def undo_xor_rshift(x, shift): | |
''' reverses the operation x ^= (x >> shift) ''' | |
result = x | |
for shift_amount in range(shift, Params.w, shift): | |
result ^= (x >> shift_amount) | |
return result | |
def undo_xor_lshiftmask(x, shift, mask): | |
''' reverses the operation x ^= ((x << shift) & mask) ''' | |
window = (1 << shift) - 1 | |
for _ in range(Params.w // shift): | |
x ^= (((window & x) << shift) & mask) | |
window <<= shift | |
return x | |
def temper(x): | |
''' tempers the value to improve k-distribution properties ''' | |
x ^= (x >> Params.u) | |
x ^= ((x << Params.s) & Params.b) | |
x ^= ((x << Params.t) & Params.c) | |
x ^= (x >> Params.l) | |
return x | |
def untemper(x): | |
''' reverses the tempering operation ''' | |
x = undo_xor_rshift(x, Params.l) | |
x = undo_xor_lshiftmask(x, Params.t, Params.c) | |
x = undo_xor_lshiftmask(x, Params.s, Params.b) | |
x = undo_xor_rshift(x, Params.u) | |
return x | |
def upper(x): | |
''' return the upper (w - r) bits of x ''' | |
return x & ((1 << Params.w) - (1 << Params.r)) | |
def lower(x): | |
''' return the lower r bits of x ''' | |
return x & ((1 << Params.r) - 1) | |
def timesA(x): | |
''' performs the equivalent of x*A ''' | |
if x & 1: | |
return (x >> 1) ^ Params.a | |
else: | |
return (x >> 1) | |
seen = collections.deque(maxlen=Params.n) | |
print('waiting for {} previous inputs'.format(Params.n)) | |
for _ in range(Params.n): | |
val = untemper(int(sys.stdin.readline())) | |
seen.append(val) | |
num_correct = num_incorrect = 0 | |
print('ready to predict') | |
while True: | |
# The recurrence relation is: | |
# | |
# x[k + n] = x[k + m] ^ timesA(upper(x[k]) | lower(x[k + 1])) | |
# | |
# Substituting j = k + n gives | |
# | |
# x[j] = x[j - n + m] ^ timesA(upper(x[j - n]) | lower(x[j - n + 1])) | |
# | |
# The 'seen' deque holds the last 'n' seen values, where seen[-1] is the | |
# most recently seen, therefore letting j = 0 gives the equation for the | |
# next predicted value. | |
next_val = seen[-Params.n + Params.m] ^ timesA( | |
upper(seen[-Params.n]) | lower(seen[-Params.n + 1])) | |
seen.append(next_val) | |
predicted = temper(next_val) | |
actual = sys.stdin.readline() | |
if not actual: | |
print('end of input -- {} predicted correctly, {} failures'.format( | |
num_correct, num_incorrect)) | |
sys.exit(0) | |
actual = int(actual) | |
if predicted == actual: | |
status = 'CORRECT' | |
num_correct += 1 | |
else: | |
status = 'FAIL' | |
num_incorrect += 1 | |
print('predicted {} got {} -- {}'.format(predicted, actual, status)) |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
#include <iostream> | |
#include <random> | |
int main() | |
{ | |
std::mt19937 mt{std::random_device{}()}; | |
// optional -- advance to some arbitrary point in the sequence | |
mt.discard(8675309); | |
for(int i = 0; i < 624 + 10; i++) { | |
std::cout << mt() << '\n'; | |
} | |
} |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
$ clang++ -Wall -Wextra -pedantic -std=c++14 -g -O2 testcase.cpp -o testcase | |
$ ./testcase | python mersenne_predict.py | |
waiting for 624 previous inputs | |
ready to predict | |
predicted 4191587413 got 4191587413 -- CORRECT | |
predicted 3803830168 got 3803830168 -- CORRECT | |
predicted 3060092316 got 3060092316 -- CORRECT | |
predicted 1846923718 got 1846923718 -- CORRECT | |
predicted 201058667 got 201058667 -- CORRECT | |
predicted 3665647888 got 3665647888 -- CORRECT | |
predicted 2520008872 got 2520008872 -- CORRECT | |
predicted 656224810 got 656224810 -- CORRECT | |
predicted 176364743 got 176364743 -- CORRECT | |
predicted 4252528975 got 4252528975 -- CORRECT | |
end of input -- 10 predicted correctly, 0 failures | |
$ ./testcase | python mersenne_predict.py | |
waiting for 624 previous inputs | |
ready to predict | |
predicted 329654205 got 329654205 -- CORRECT | |
predicted 539185382 got 539185382 -- CORRECT | |
predicted 2864548263 got 2864548263 -- CORRECT | |
predicted 1977004707 got 1977004707 -- CORRECT | |
predicted 2299828616 got 2299828616 -- CORRECT | |
predicted 2990397916 got 2990397916 -- CORRECT | |
predicted 1480674209 got 1480674209 -- CORRECT | |
predicted 3199083133 got 3199083133 -- CORRECT | |
predicted 1235004829 got 1235004829 -- CORRECT | |
predicted 771504621 got 771504621 -- CORRECT | |
end of input -- 10 predicted correctly, 0 failures |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment