Last active
January 28, 2025 11:06
-
-
Save mcanouil/12da218d692d5484686c959fbcb920c2 to your computer and use it in GitHub Desktop.
PCA plot
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
# # MIT License | |
# | |
# Copyright (c) 2025 Mickaël Canouil | |
# | |
# Permission is hereby granted, free of charge, to any person obtaining a copy | |
# of this software and associated documentation files (the "Software"), to deal | |
# in the Software without restriction, including without limitation the rights | |
# to use, copy, modify, merge, publish, distribute, sublicense, and/or sell | |
# copies of the Software, and to permit persons to whom the Software is | |
# furnished to do so, subject to the following conditions: | |
# The above copyright notice and this permission notice shall be included in all | |
# copies or substantial portions of the Software. | |
# THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR | |
# IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, | |
# FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE | |
# AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER | |
# LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, | |
# OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE | |
# SOFTWARE. | |
library(flashpcaR) | |
library(ggplot2) | |
library(data.table) | |
library(ggtext) | |
library(glue) | |
library(patchwork) | |
n_comp <- 5 | |
iqr_threshold <- 3 | |
data_matrix <- rlog_counts | |
pca_res <- flashpca(X = t(data_matrix), stand = "none", ndim = 10) | |
pca_dfxy <- as.data.table(pca_res[["projection"]], keep.rownames = "ID") | |
setnames( | |
x = pca_dfxy, | |
old = setdiff(names(pca_dfxy), "ID"), | |
new = sprintf("PC%02d", as.numeric(gsub("V", "", setdiff(names(pca_dfxy), "ID")))) | |
) | |
pca_dfxy <- merge( | |
x = pca_dfxy[, "ID" := as.character(ID)], | |
y = as.data.table(phenotypes)[, "ID" := as.character(ID)], | |
by = "ID" | |
)[, | |
dist_centre := rowSums(sapply(.SD, function(x) as.vector(scale(x))^2)), | |
.SDcols = sprintf("PC%02d", 1:3) | |
][, | |
is_outlier := factor( | |
x = dist_centre > ( | |
quantile(dist_centre, 0.75, na.rm = TRUE) + iqr_threshold * IQR(dist_centre, na.rm = TRUE) | |
), | |
levels = c(FALSE, TRUE), | |
labels = c("No", "Yes") | |
) | |
] | |
pca_contrib <- sprintf( | |
fmt = "PC%02d (%s %%)", | |
seq_along(pca_res[["pve"]]), | |
format( | |
x = round(pca_res[["pve"]] * 100, digits = 3), | |
digits = 2, nsmall = 2, trim = TRUE, scientific = FALSE | |
) | |
) | |
names(pca_contrib) <- sprintf("PC%02d", seq_along(pca_res[["pve"]])) | |
p_inertia <- ggplot( | |
data = data.table( | |
y = pca_res[["pve"]], | |
x = sprintf("PC%02d", seq_along(pca_res[["pve"]])) | |
)[1:n_comp], | |
mapping = aes( | |
x = paste0( | |
.data[["x"]], | |
"<br><i style='font-size:5pt;'>(", | |
format(.data[["y"]] * 100, digits = 2, nsmall = 2, trim = TRUE, scientific = FALSE), | |
" %)</i>" | |
), | |
y = .data[["y"]] | |
) | |
) + | |
geom_col( | |
width = 1, | |
colour = "white", | |
fill = viridis_pal(begin = 0.5, end = 0.5)(1), | |
na.rm = TRUE | |
) + | |
scale_y_continuous( | |
labels = function(x) paste(format(x * 100, digits = 2, nsmall = 2), "%"), | |
expand = expansion(mult = c(0, 0.05)) | |
) + | |
labs(x = "Principal Component", y = "Contribution") | |
plot_list <- lapply(as.list(as.data.frame(combn(1:3, 2))), function(xy) { | |
ggplot( | |
data = pca_dfxy, | |
mapping = aes( | |
x = .data[[sprintf("PC%02d", xy[1])]], | |
y = .data[[sprintf("PC%02d", xy[2])]], | |
colour = is_outlier, | |
shape = is_outlier | |
) | |
) + | |
geom_hline(yintercept = 0, linetype = 2, na.rm = TRUE) + | |
geom_vline(xintercept = 0, linetype = 2, na.rm = TRUE) + | |
geom_point(na.rm = TRUE) + | |
stat_ellipse(type = "norm", na.rm = TRUE, show.legend = FALSE) + | |
scale_colour_viridis_d( | |
begin = 0.25, | |
end = 0.75, | |
guide = guide_legend(override.aes = list(size = 4)), | |
drop = FALSE | |
) + | |
scale_shape_manual(values = c(1, 4), drop = FALSE) + | |
geom_label_repel( | |
mapping = aes(label = label), | |
data = ~ .x[is_outlier %in% "Yes", label := ID], | |
fill = "white", | |
colour = "black", | |
segment.colour = "black", | |
min.segment.length = 0, | |
show.legend = FALSE, | |
na.rm = TRUE | |
) + | |
labs( | |
x = pca_contrib[sprintf("PC%02d", xy[1])], | |
y = pca_contrib[sprintf("PC%02d", xy[2])], | |
colour = "Outlier<sup>†</sup>", | |
shape = "Outlier<sup>†</sup>" | |
) + | |
coord_cartesian( | |
xlim = range(pca_dfxy[[sprintf("PC%02d", xy[1])]]), | |
ylim = range(pca_dfxy[[sprintf("PC%02d", xy[2])]]) | |
) | |
}) | |
wrap_plots(c(plot_list, list(p_inertia)), guides = "collect") + | |
plot_annotation( | |
title = "Principal Component Analysis", | |
subtitle = "Outliers Detection", | |
caption = glue( | |
"<sup>†</sup>Outliers defined for a Euclidean distance from cohort centroid (based on the principal components up to 3)<br>", | |
"higher than {iqr_threshold} times the interquartile range above the 75<sup>th</sup> percentile." | |
), | |
tag_levels = "A" | |
) |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment