Created
August 24, 2017 00:58
-
-
Save mcchae/0a30383dbddd90adf7a426a8e94c4c46 to your computer and use it in GitHub Desktop.
Python OpenCV Image diff
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
# USAGE | |
# python image_diff.py --first images/original_01.png --second images/modified_01.png | |
# import the necessary packages | |
from skimage.measure import compare_ssim | |
import argparse | |
import imutils | |
import cv2 | |
# construct the argument parse and parse the arguments | |
ap = argparse.ArgumentParser() | |
ap.add_argument("-f", "--first", required=True, | |
help="first input image") | |
ap.add_argument("-s", "--second", required=True, | |
help="second") | |
args = vars(ap.parse_args()) | |
# load the two input images | |
imageA = cv2.imread(args["first"]) | |
imageB = cv2.imread(args["second"]) | |
# convert the images to grayscale | |
# next line make error | |
# OpenCV Error: Assertion failed (scn == 3 || scn == 4) in cvtColor | |
grayA = cv2.cvtColor(imageA, cv2.COLOR_BGR2GRAY) | |
grayB = cv2.cvtColor(imageB, cv2.COLOR_BGR2GRAY) | |
# compute the Structural Similarity Index (SSIM) between the two | |
# images, ensuring that the difference image is returned | |
(score, diff) = compare_ssim(grayA, grayB, full=True) | |
diff = (diff * 255).astype("uint8") | |
print("SSIM: {}".format(score)) | |
# threshold the difference image, followed by finding contours to | |
# obtain the regions of the two input images that differ | |
thresh = cv2.threshold(diff, 0, 255, | |
cv2.THRESH_BINARY_INV | cv2.THRESH_OTSU)[1] | |
cnts = cv2.findContours(thresh.copy(), cv2.RETR_EXTERNAL, | |
cv2.CHAIN_APPROX_SIMPLE) | |
cnts = cnts[0] if imutils.is_cv2() else cnts[1] | |
# loop over the contours | |
for c in cnts: | |
# compute the bounding box of the contour and then draw the | |
# bounding box on both input images to represent where the two | |
# images differ | |
(x, y, w, h) = cv2.boundingRect(c) | |
cv2.rectangle(imageA, (x, y), (x + w, y + h), (0, 0, 255), 2) | |
cv2.rectangle(imageB, (x, y), (x + w, y + h), (0, 0, 255), 2) | |
# show the output images | |
cv2.imshow("Original", imageA) | |
cv2.imshow("Modified", imageB) | |
cv2.imshow("Diff", diff) | |
cv2.imshow("Thresh", thresh) | |
cv2.waitKey(0) |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment
if original image in one position and edited image in rotated position then it is not giving correct output then which method is used equalised both images