Last active
March 22, 2021 05:56
-
-
Save mcieno/a417c7d82049021036a4b2a6295d8231 to your computer and use it in GitHub Desktop.
Howgrave-Graham and Seifert's small private exponent attack on common modulus RSA (2 public exponents).
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
# -*- coding: utf8 -*- | |
# See: https://eprint.iacr.org/2009/037.pdf | |
N = 24402191928494981635640497435944050736451453218629774561432653700273120014058697415669445779441226800209154604159648942665855233706977525093135734838825433023506185915211877990448599462290859092875150657461517275171867229282791419867655722945527203477335565212992510088077874648530075739380783193891617730212062455173395228143660241234491822044677453330325054451661281530021397747260054593565182679642519767415355255125571875708238139022404975788807868905750857687120708529622235978672838872361435045431974203089535736573597127746452000608771150171882058819685487644883286497700966396731658307013308396226751130001733 | |
e1 = 4046316324291866910571514561657995962295158364702933460389468827072872865293920814266515228710438970257021065064390281148950759462687498079736672906875128944198140931482449741147988959788282715310307170986783402655196296704611285447752149956531303574680859541910243014672391229934386132475024308686852032924357952489090295552491467702140263159982675018932692576847952002081478475199969962357685826609238653859264698996411770860260854720047710943051229985596674736079206428312934943752164281391573970043088475625727793169708939179742630253381871307298938827042259481077482527690653141867639100647971209354276568204913 | |
e2 = 1089598671818931285487024526159841107695197822929259299424340503971498264804485187657064861422396497630013501691517290648230470308986030853450089582165362228856724965735826515693970375662407779866271304787454416740708203748591727184057428330386039766700161610534430469912754092586892162446358263283169799095729696407424696871657157280716343681857661748656695962441400433284766608408307217925949587261052855826382885300521822004968209647136722394587701720895365101311180886403748262958990917684186947245463537312582719347101291391169800490817330947249069884756058179616748856032431769837992142653355261794817345492723 | |
r = RR(2) # Number of primes in N | |
# delta2 = (3 + r) / (7 * r) - epsilon | |
DELTA2_BOUND = (3 + r) / (7 * r) | |
MAX_EPS = 0.1 | |
ATTEMPTS = 100 | |
for eps in range(ATTEMPTS): | |
delta2 = DELTA2_BOUND - MAX_EPS * (eps / ATTEMPTS) | |
D2 = diagonal_matrix(ZZ, | |
[ Integer( N**(2 - 2 / r) ), | |
Integer( N**(1 - 1 / r) ), | |
Integer( N**(delta2 + 2 - 2 / r) ), | |
Integer( 1 ) ] ) | |
B2 = Matrix(ZZ, [ [ 1, -N, 0, N ** 2 ], | |
[ 0, e1, -e1, -e1 * N ], | |
[ 0, 0, e2, -e2 * N ], | |
[ 0, 0, 0, e1 * e2 ] ]) | |
B2_prime = B2 * D2 | |
L = B2_prime.LLL() | |
v = Matrix(ZZ, L[0]) | |
x = v * B2_prime.inverse() | |
# x = (k1 * k2, k2 * d1, k1 * d2, d1 * d2) | |
# phi = ( e1 * d1 - 1 ) / k1 = floor( e1 * (d1 / k1) ) | |
d1_k1 = x[0,1] / x[0,0] | |
phi = ( e1 * d1_k1 ).floor() | |
P = PolynomialRing(ZZ, 'x') | |
x = P.gen() | |
f = x**2 - (N - phi + 1) * x + N | |
if f.roots(): | |
p, q = f.roots()[0][0], f.roots()[1][0] | |
if (p * q == N and p != 1 and q != 1): | |
print('N factored with delta2 =', delta2) | |
print('p =', p) | |
print('q =', q) | |
break | |
else: | |
print('N could not be factored') |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment