Last active
July 2, 2025 10:25
-
-
Save mcieno/f0c6334af28f60d244fa054f5a1c22d2 to your computer and use it in GitHub Desktop.
MOV attack on elliptic curves.
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
# Setup curve | |
p = 17 | |
a, b = 1, -1 | |
E = EllipticCurve(GF(p), [a, b]) | |
G = E.gen(0) | |
# Target secret key | |
d = 8 | |
# Public point | |
P = d * G | |
del d | |
# Find the embedding degree | |
# p**k - 1 === 0 (mod order) | |
order = E.order() | |
k = 1 | |
while (p**k - 1) % order: | |
k += 1 | |
assert k <= 6 | |
K.<a> = GF(p**k) | |
EK = E.base_extend(K) | |
PK = EK(P) | |
GK = EK(G) | |
d = 0 | |
while P != d * G: | |
QK = EK.random_point() | |
if QK.order() != E.order(): | |
continue | |
AA = PK.tate_pairing(QK, E.order(), k) | |
GG = GK.tate_pairing(QK, E.order(), k) | |
d = AA.log(GG) | |
print(F"{d=}") |
@mcieno : and what about the case where the elliptic curve is binary curve ? In my case, I’ve
so obviously, as a result of the underlying finite field being a prime power, I can’t do something like point = E(integer,integer)
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment
@ytrezq
Was tested on
which was a VolgaCTF 2020 Qualifier challenge.