Created
September 25, 2012 16:35
-
-
Save mckamey/3783009 to your computer and use it in GitHub Desktop.
JavaScript port of Webkit CSS cubic-bezier(p1x.p1y,p2x,p2y) and various approximations
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
/* | |
* Copyright (C) 2008 Apple Inc. All Rights Reserved. | |
* | |
* Redistribution and use in source and binary forms, with or without | |
* modification, are permitted provided that the following conditions | |
* are met: | |
* 1. Redistributions of source code must retain the above copyright | |
* notice, this list of conditions and the following disclaimer. | |
* 2. Redistributions in binary form must reproduce the above copyright | |
* notice, this list of conditions and the following disclaimer in the | |
* documentation and/or other materials provided with the distribution. | |
* | |
* THIS SOFTWARE IS PROVIDED BY APPLE INC. ``AS IS'' AND ANY | |
* EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE | |
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR | |
* PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL APPLE INC. OR | |
* CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, | |
* EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, | |
* PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR | |
* PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY | |
* OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT | |
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE | |
* OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. | |
*/ | |
/** | |
* JavaScript port of Webkit implementation of CSS cubic-bezier(p1x.p1y,p2x,p2y) by http://mck.me | |
* http://svn.webkit.org/repository/webkit/trunk/Source/WebCore/platform/graphics/UnitBezier.h | |
*/ | |
var Bezier = (function(){ | |
'use strict'; | |
/** | |
* Duration value to use when one is not specified (400ms is a common value). | |
* @const | |
* @type {number} | |
*/ | |
var DEFAULT_DURATION = 400;//ms | |
/** | |
* The epsilon value we pass to UnitBezier::solve given that the animation is going to run over |dur| seconds. | |
* The longer the animation, the more precision we need in the timing function result to avoid ugly discontinuities. | |
* http://svn.webkit.org/repository/webkit/trunk/Source/WebCore/page/animation/AnimationBase.cpp | |
*/ | |
var solveEpsilon = function(duration) { | |
return 1.0 / (200.0 * duration); | |
}; | |
/** | |
* Defines a cubic-bezier curve given the middle two control points. | |
* NOTE: first and last control points are implicitly (0,0) and (1,1). | |
* @param p1x {number} X component of control point 1 | |
* @param p1y {number} Y component of control point 1 | |
* @param p2x {number} X component of control point 2 | |
* @param p2y {number} Y component of control point 2 | |
*/ | |
var unitBezier = function(p1x, p1y, p2x, p2y) { | |
// private members -------------------------------------------- | |
// Calculate the polynomial coefficients, implicit first and last control points are (0,0) and (1,1). | |
/** | |
* X component of Bezier coefficient C | |
* @const | |
* @type {number} | |
*/ | |
var cx = 3.0 * p1x; | |
/** | |
* X component of Bezier coefficient B | |
* @const | |
* @type {number} | |
*/ | |
var bx = 3.0 * (p2x - p1x) - cx; | |
/** | |
* X component of Bezier coefficient A | |
* @const | |
* @type {number} | |
*/ | |
var ax = 1.0 - cx -bx; | |
/** | |
* Y component of Bezier coefficient C | |
* @const | |
* @type {number} | |
*/ | |
var cy = 3.0 * p1y; | |
/** | |
* Y component of Bezier coefficient B | |
* @const | |
* @type {number} | |
*/ | |
var by = 3.0 * (p2y - p1y) - cy; | |
/** | |
* Y component of Bezier coefficient A | |
* @const | |
* @type {number} | |
*/ | |
var ay = 1.0 - cy - by; | |
/** | |
* @param t {number} parametric timing value | |
* @return {number} | |
*/ | |
var sampleCurveX = function(t) { | |
// `ax t^3 + bx t^2 + cx t' expanded using Horner's rule. | |
return ((ax * t + bx) * t + cx) * t; | |
}; | |
/** | |
* @param t {number} parametric timing value | |
* @return {number} | |
*/ | |
var sampleCurveY = function(t) { | |
return ((ay * t + by) * t + cy) * t; | |
}; | |
/** | |
* @param t {number} parametric timing value | |
* @return {number} | |
*/ | |
var sampleCurveDerivativeX = function(t) { | |
return (3.0 * ax * t + 2.0 * bx) * t + cx; | |
}; | |
/** | |
* Given an x value, find a parametric value it came from. | |
* @param x {number} value of x along the bezier curve, 0.0 <= x <= 1.0 | |
* @param epsilon {number} accuracy limit of t for the given x | |
* @return {number} the t value corresponding to x | |
*/ | |
var solveCurveX = function(x, epsilon) { | |
var t0; | |
var t1; | |
var t2; | |
var x2; | |
var d2; | |
var i; | |
// First try a few iterations of Newton's method -- normally very fast. | |
for (t2 = x, i = 0; i < 8; i++) { | |
x2 = sampleCurveX(t2) - x; | |
if (Math.abs (x2) < epsilon) { | |
return t2; | |
} | |
d2 = sampleCurveDerivativeX(t2); | |
if (Math.abs(d2) < 1e-6) { | |
break; | |
} | |
t2 = t2 - x2 / d2; | |
} | |
// Fall back to the bisection method for reliability. | |
t0 = 0.0; | |
t1 = 1.0; | |
t2 = x; | |
if (t2 < t0) { | |
return t0; | |
} | |
if (t2 > t1) { | |
return t1; | |
} | |
while (t0 < t1) { | |
x2 = sampleCurveX(t2); | |
if (Math.abs(x2 - x) < epsilon) { | |
return t2; | |
} | |
if (x > x2) { | |
t0 = t2; | |
} else { | |
t1 = t2; | |
} | |
t2 = (t1 - t0) * 0.5 + t0; | |
} | |
// Failure. | |
return t2; | |
}; | |
/** | |
* @param x {number} the value of x along the bezier curve, 0.0 <= x <= 1.0 | |
* @param epsilon {number} the accuracy of t for the given x | |
* @return {number} the y value along the bezier curve | |
*/ | |
var solve = function(x, epsilon) { | |
return sampleCurveY(solveCurveX(x, epsilon)); | |
}; | |
// public interface -------------------------------------------- | |
/** | |
* Find the y of the cubic-bezier for a given x with accuracy determined by the animation duration. | |
* @param x {number} the value of x along the bezier curve, 0.0 <= x <= 1.0 | |
* @param duration {number} the duration of the animation in milliseconds | |
* @return {number} the y value along the bezier curve | |
*/ | |
return function(x, duration) { | |
return solve(x, solveEpsilon(+duration || DEFAULT_DURATION)); | |
}; | |
}; | |
// http://www.w3.org/TR/css3-transitions/#transition-timing-function | |
return { | |
/** | |
* @param x {number} the value of x along the bezier curve, 0.0 <= x <= 1.0 | |
* @param duration {number} the duration of the animation in milliseconds | |
* @return {number} the y value along the bezier curve | |
*/ | |
linear: unitBezier(0.0, 0.0, 1.0, 1.0), | |
/** | |
* @param x {number} the value of x along the bezier curve, 0.0 <= x <= 1.0 | |
* @param duration {number} the duration of the animation in milliseconds | |
* @return {number} the y value along the bezier curve | |
*/ | |
ease: unitBezier(0.25, 0.1, 0.25, 1.0), | |
/** | |
* @param x {number} the value of x along the bezier curve, 0.0 <= x <= 1.0 | |
* @param duration {number} the duration of the animation in milliseconds | |
* @return {number} the y value along the bezier curve | |
*/ | |
easeIn: unitBezier(0.42, 0, 1.0, 1.0), | |
/** | |
* @param x {number} the value of x along the bezier curve, 0.0 <= x <= 1.0 | |
* @param duration {number} the duration of the animation in milliseconds | |
* @return {number} the y value along the bezier curve | |
*/ | |
easeOut: unitBezier(0, 0, 0.58, 1.0), | |
/** | |
* @param x {number} the value of x along the bezier curve, 0.0 <= x <= 1.0 | |
* @param duration {number} the duration of the animation in milliseconds | |
* @return {number} the y value along the bezier curve | |
*/ | |
easeInOut: unitBezier(0.42, 0, 0.58, 1.0), | |
/** | |
* @param p1x {number} X component of control point 1 | |
* @param p1y {number} Y component of control point 1 | |
* @param p2x {number} X component of control point 2 | |
* @param p2y {number} Y component of control point 2 | |
* @param x {number} the value of x along the bezier curve, 0.0 <= x <= 1.0 | |
* @param duration {number} the duration of the animation in milliseconds | |
* @return {number} the y value along the bezier curve | |
*/ | |
cubicBezier: function(p1x, p1y, p2x, p2y, x, duration) { | |
return unitBezier(p1x, p1y, p2x, p2y)(x, duration); | |
} | |
}; | |
})(); |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
/** | |
* Various fast approximations and alternates to cubic-bezier easing functions. | |
* http://www.w3.org/TR/css3-transitions/#transition-timing-function | |
*/ | |
var Easing = (function(){ | |
'use strict'; | |
/** | |
* @const | |
*/ | |
var EASE_IN_OUT_CONST = 0.5 * Math.pow(0.5, 1.925); | |
return { | |
/** | |
* @param x {number} the value of x along the curve, 0.0 <= x <= 1.0 | |
* @return {number} the y value along the curve | |
*/ | |
linear: function(x) { | |
return x; | |
}, | |
// /** | |
// * @param x {number} the value of x along the curve, 0.0 <= x <= 1.0 | |
// * @return {number} the y value along the curve | |
// */ | |
// ease: function(x) { | |
// // TODO: find fast approximations | |
// return x; | |
// }, | |
/** | |
* @param x {number} the value of x along the curve, 0.0 <= x <= 1.0 | |
* @return {number} the y value along the curve | |
*/ | |
easeInApprox: function(x) { | |
// very close approximation to cubic-bezier(0.42, 0, 1.0, 1.0) | |
return Math.pow(x, 1.685); | |
}, | |
/** | |
* @param x {number} the value of x along the curve, 0.0 <= x <= 1.0 | |
* @return {number} the y value along the curve | |
*/ | |
easeInQuadratic: function(x) { | |
return (x * x); | |
}, | |
/** | |
* @param x {number} the value of x along the curve, 0.0 <= x <= 1.0 | |
* @return {number} the y value along the curve | |
*/ | |
easeInCubic: function(x) { | |
return (x * x * x); | |
}, | |
/** | |
* @param x {number} the value of x along the curve, 0.0 <= x <= 1.0 | |
* @return {number} the y value along the curve | |
*/ | |
easeOutApprox: function(x) { | |
// very close approximation to cubic-bezier(0, 0, 0.58, 1.0) | |
return 1 - Math.pow(1-x, 1.685); | |
}, | |
/** | |
* @param x {number} the value of x along the curve, 0.0 <= x <= 1.0 | |
* @return {number} the y value along the curve | |
*/ | |
easeOutQuadratic: function(x) { | |
x -= 1; | |
return 1 - (x * x); | |
}, | |
/** | |
* @param x {number} the value of x along the curve, 0.0 <= x <= 1.0 | |
* @return {number} the y value along the curve | |
*/ | |
easeOutCubic: function(x) { | |
x -= 1; | |
return 1 + (x * x * x); | |
}, | |
/** | |
* @param x {number} the value of x along the curve, 0.0 <= x <= 1.0 | |
* @return {number} the y value along the curve | |
*/ | |
easeInOutApprox: function(x) { | |
// very close approximation to cubic-bezier(0.42, 0, 0.58, 1.0) | |
if (x < 0.5) { | |
return EASE_IN_OUT_CONST * Math.pow(x, 1.925); | |
} else { | |
return 1 - EASE_IN_OUT_CONST * Math.pow(1-x, 1.925); | |
} | |
}, | |
/** | |
* @param x {number} the value of x along the curve, 0.0 <= x <= 1.0 | |
* @return {number} the y value along the curve | |
*/ | |
easeInOutQuadratic: function(x) { | |
if (x < 0.5) { | |
return (2 * x * x); | |
} else { | |
x -= 1; | |
return 1 - (2 * x * x); | |
} | |
}, | |
/** | |
* @param x {number} the value of x along the curve, 0.0 <= x <= 1.0 | |
* @return {number} the y value along the curve | |
*/ | |
easeInOutCubic: function(x) { | |
if (x < 0.5) { | |
return (4 * x * x * x); | |
} else { | |
x -= 1; | |
return 1 + (4 * x * x * x); | |
} | |
}, | |
/** | |
* @param x {number} the value of x along the curve, 0.0 <= x <= 1.0 | |
* @return {number} the y value along the curve | |
*/ | |
easeInOutQuartic: function(x) { | |
if (x < 0.5) { | |
return (8 * x * x * x * x); | |
} else { | |
x -= 1; | |
return 1 + (8 * x * x * x * x); | |
} | |
}, | |
/** | |
* @param x {number} the value of x along the curve, 0.0 <= x <= 1.0 | |
* @return {number} the y value along the curve | |
*/ | |
easeInOutQuintic: function(x) { | |
if (x < 0.5) { | |
return (16 * x * x * x * x * x); | |
} else { | |
x -= 1; | |
return 1 + (16 * x * x * x * x * x); | |
} | |
} | |
}; | |
})(); |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment
Guess not. Here's mine.