Created
January 17, 2018 15:44
-
-
Save mconcas/638af19f99a5614ca8ec6e9d2043dc0c to your computer and use it in GitHub Desktop.
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
print(__doc__) | |
import numpy as np | |
from sklearn.cluster import DBSCAN | |
from sklearn import metrics | |
from sklearn.datasets.samples_generator import make_blobs | |
from sklearn.preprocessing import StandardScaler | |
# ############################################################################# | |
# Generate sample data | |
X = np.loadtxt("digit_output.txt") | |
# centers = [[1, 1], [-1, -1], [1, -1]] | |
# X, labels_true = make_blobs(n_samples=750, centers=centers, cluster_std=0.4, | |
# random_state=0) | |
# X = StandardScaler().fit_transform(X) | |
# ############################################################################# | |
# Compute DBSCAN | |
db = DBSCAN(eps=0.3, min_samples=10).fit(X) | |
core_samples_mask = np.zeros_like(db.labels_, dtype=bool) | |
core_samples_mask[db.core_sample_indices_] = True | |
labels = db.labels_ | |
# Number of clusters in labels, ignoring noise if present. | |
n_clusters_ = len(set(labels)) - (1 if -1 in labels else 0) | |
print('Estimated number of clusters: %d' % n_clusters_) | |
# print("Homogeneity: %0.3f" % metrics.homogeneity_score(labels_true, labels)) | |
# print("Completeness: %0.3f" % metrics.completeness_score(labels_true, labels)) | |
# print("V-measure: %0.3f" % metrics.v_measure_score(labels_true, labels)) | |
# print("Adjusted Rand Index: %0.3f" | |
# % metrics.adjusted_rand_score(labels_true, labels)) | |
# print("Adjusted Mutual Information: %0.3f" | |
# % metrics.adjusted_mutual_info_score(labels_true, labels)) | |
# print("Silhouette Coefficient: %0.3f" | |
# % metrics.silhouette_score(X, labels)) | |
# ############################################################################# | |
# Plot result | |
import matplotlib.pyplot as plt | |
# Black removed and is used for noise instead. | |
unique_labels = set(labels) | |
colors = [plt.cm.Spectral(each) | |
for each in np.linspace(0, 1, len(unique_labels))] | |
for k, col in zip(unique_labels, colors): | |
if k == -1: | |
# Black used for noise. | |
col = [0, 0, 0, 1] | |
class_member_mask = (labels == k) | |
xy = X[class_member_mask & core_samples_mask] | |
plt.plot(xy[:, 0], xy[:, 1], 'o', markerfacecolor=tuple(col), | |
markeredgecolor='k', markersize=14) | |
xy = X[class_member_mask & ~core_samples_mask] | |
plt.plot(xy[:, 0], xy[:, 1], 'o', markerfacecolor=tuple(col), | |
markeredgecolor='k', markersize=6) | |
plt.title('Estimated number of clusters: %d' % n_clusters_) | |
plt.show() |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment