Last active
January 18, 2018 09:16
-
-
Save mconcas/721c7a0f43a49f089ec4e640592b52ff to your computer and use it in GitHub Desktop.
Usare con: `./clusterer.py [filename] [epsilon] [min_samples]`
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
#! /usr/bin/env python | |
import numpy as np | |
import sys | |
import pprint | |
from sklearn.cluster import dbscan | |
pars = sys.argv | |
if len(pars) != 5: | |
print("\tUsage: ./clusterer.py [filename] [epsilon] [min_samples] [output]") | |
sys.exit(-1) | |
pp = pprint.PrettyPrinter(indent=2) | |
# Notable SO goodie: | |
# https://stackoverflow.com/questions/3844801/check-if-all-elements-in-a-list-are-identical | |
# List of pixels: | |
# pixel: [x, y, pID, MCl] | |
pixels = np.loadtxt(pars[1]) | |
core_samples, cl_labels = dbscan(pixels, eps=float(pars[2]), min_samples=int(pars[3]), | |
metric='euclidean') | |
# List of clusters: | |
# cluster: { ClID: [pixel, ...] } | |
clusters = {} | |
# Fill a dictionary with clusters data | |
for pos,label in enumerate(cl_labels): | |
# Dictionary of clusters does not contain any entry with corresponding cl_label | |
if label not in clusters: | |
clusters[label] = [list(pixels[pos])] | |
# Label already present, append new pixel to pixel list | |
else: | |
clusters[label].append(list(pixels[pos])) | |
# Skim data: | |
# Create on the fly the list of mc labels of pixels and test whether they contain | |
# all the same labels | |
bad_clusters = {k:v for k,v in clusters.iteritems() if not [x[3] for x in v][1:] == [x[3] for x in v][:-1]} | |
hom_clusters = {k:v for k,v in clusters.iteritems() if [x[3] for x in v][1:] == [x[3] for x in v][:-1]} | |
frg_clusters = {} | |
# Iter over skimmed, find duplicates | |
for k1,v1 in hom_clusters.iteritems(): | |
for k2,v2 in hom_clusters.iteritems(): | |
if v1[0][3] == v2[0][3] and k1 != k2: | |
frg_clusters[k1] = v1 | |
# Remove fragmented from homogeneous, find good clusters | |
good_clusters = {k:v for k,v in hom_clusters.iteritems() if not k in frg_clusters.keys()} | |
# pp.pprint(hom_clusters) | |
# pp.pprint(bad_clusters) | |
# pp.pprint(frg_clusters) | |
# pp.pprint(good_clusters) | |
print("Clusters Found:\n\tTotal: %d\n\tHomogeneous: %d\n\tBad: %d\n\tFragmented: %d\n\tGood: %d" % (len(clusters), len(hom_clusters), len(bad_clusters), len(frg_clusters), len(good_clusters))) | |
with open(pars[4],"a") as of: | |
of.write("%.4f %d %d %d %d %d %d" %(float(pars[2]), float(pars[3]), len(clusters), len(hom_clusters), len(bad_clusters), len(frg_clusters), len(good_clusters))) |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment